Uneingeschränkter Zugang

Properties of Flame Spraying Coatings Reinforced with Particles of Carbon Nanotubes

 und    | 30. März 2021

Zitieren

1. Lisiecki, A., (2016). Comparison of Titanium Metal Matrix Composite surface layers produced during laser gas nitriding of Ti6Al4V alloy by different types of lasers. Arch. Metall. Mater., 61, 1777–1783.10.1515/amm-2016-0287Search in Google Scholar

2. Rogalski, G., Świerczyńska, A., Landowski, M., Fydrych, D., (2020). Mechanical and microstructural characterization of TIG welded dissimilar joints between 304L austenitic stainless steel and Incoloy 800HT nickel alloy. Metals, 10(5), 559.10.3390/met10050559Search in Google Scholar

3. Sajek, A. (2020). Welding thermal cycles of joints made of S1100QL steel by SAW and hybrid plasma-MAG processes. Adv. Mater. Sci., 20(4), 75-86.10.2478/adms-2020-0023Search in Google Scholar

4. Cacko, R., Chmielewski, T., Hudycz, M., Golański, D. (2020). New approach of friction AlN ceramics metallization with the initial FEM verification. Arch. Civ. Mech. Eng., 20(3), 1-11.10.1007/s43452-020-00094-2Search in Google Scholar

5. Pańcikiewicz, K., Świerczyńska, A., Hućko, P., Tumidajewicz, M. (2020). Laser dissimilar welding of AISI 430F and AISI 304 stainless steels. Materials, 13(20), 4540.10.3390/ma13204540760194633066116Search in Google Scholar

6. Szala, M., Łatka, L., Walczak, M., Winnicki, M., (2020). Comparative study on the cavitation erosion and sliding wear of cold-sprayed Al/Al2O3 and Cu/Al2O3 coatings, and stainless steel, aluminium alloy, copper and brass. Metals, 10(7), 856.10.3390/met10070856Search in Google Scholar

7. Sundaramoorthy, R., Tong, S.X, Parekh, D., Subramanian, C., (2017). Effect of matrix chemistry and WC types on the performance of Ni-WC based MMC overlays deposited by plasma transferred arc (PTA) welding. Wear, 376–377, B, 1720-1727.10.1016/j.wear.2017.01.027Search in Google Scholar

8. Rutkowska-Gorczyca, M., Ptak, A., Winnicki, M., (2020). Analysis of the tribological properties of Cu-aTiO2 composite coatings applied by the cold spray method. Tribologia, 292(4) 51-57.10.5604/01.3001.0014.5907Search in Google Scholar

9. Czupryński, A., (2019). Flame spraying of aluminum coatings reinforced with particles of carbonaceous materials as an alternative for laser cladding technologies. Materials, 12(21), 3467.10.3390/ma12213467686193731652697Search in Google Scholar

10. Kumar, S., Ghosh, S. K. (2020). Porosity and tribological performance analysis on new developed metal matrix composite for brake pad materials. J. Manuf. Proc., 59, 186-204.10.1016/j.jmapro.2020.09.053Search in Google Scholar

11. Takashi, I., (2006). Overview of trends in advanced composite research and applications in Japan. Adv. Compos. Mater., 15, 3–37.10.1163/156855106776829383Search in Google Scholar

12. Bokobza, L., (2007). Multiwall carbon nanotube elastomeric composites. A review. Polymer, 48, 4907–4920.10.1016/j.polymer.2007.06.046Search in Google Scholar

13. Curtin, W.A., Sheldon, B.W., (2004). CNT-reinforced ceramics and metals. Mater. Today, 7, 44–49.10.1016/S1369-7021(04)00508-5Search in Google Scholar

14. Saffar, K.P.A., Najafi, A.R., Moeinzadeh, M.H., Sudak, L.J.A., (2013). Finite element study of crack behavior for carbon nanotube reinforced bone cement. World J. Mech., 3, 13–21.10.4236/wjm.2013.35A003Search in Google Scholar

15. Bakshi, S.R., Singh, V., Balani, K., McCartney, D.G., Seal, S., Agarwal, A., (2008). Carbon nanotube reinforced aluminum composite coating via cold spraying. Surf. Coat. Technol., 202, 5162–5169.10.1016/j.surfcoat.2008.05.042Search in Google Scholar

16. Keshri, A.K., Balani, K., Bakshi, S.R., Singh, V., Laha, T., Seal, S., Agarwal, A., (2009). Structural transformations in carbon nanotubes during thermal spray processing. Surf. Coat. Technol., 203, 2193–2201.10.1016/j.surfcoat.2009.02.013Search in Google Scholar

17. Wu, Y., Kim, G., (2011). Carbon nanotube reinforced aluminum composite fabricated by semi-solid powder processing. J. Mater. Process. Technol., 211, 1341–1347.10.1016/j.jmatprotec.2011.03.007Search in Google Scholar

18. Liao, J., Tan, M., Ramanujan, R.V., Shukla, S., (2011). Carbon nanotube evolution in aluminum matrix during composite fabrication process. Mater. Sci. Forum, 690, 294–297.10.4028/www.scientific.net/MSF.690.294Search in Google Scholar

19. Bakshi, S.R., Singh, V., Seal, S., Agarwal, A., (2009). Aluminum composite reinforced with multiwalled carbon nanotubes from plasma spraying of spray dried powders. Surf. Coat. Technol., 203, 1544–1554.10.1016/j.surfcoat.2008.12.004Search in Google Scholar

20. Zeng, X., Zhou, G., Xu, Q., Xiong, Y., Luo Ch., Wu, J., (2010). A new technique for dispersion of carbon nanotube in a metal melt. Mater. Sci. Eng. A, 527, 5335–5340.10.1016/j.msea.2010.05.005Search in Google Scholar

21. Kondoh, K., Fukuda, H., Umeda, J., Imai, H., Fugetsu, B., Endo, M., (2010). Microstructural and mechanical analysis of carbon nanotube reinforced magnesium alloy powder composites. Mater. Sci. Eng. A, 527, 4103–4108.10.1016/j.msea.2010.03.049Search in Google Scholar

22. He, X., Kitipornchai, S., Liew, K.M., (2005). Buckling analysis of multi-walled carbon nanotubes: A continuum model accounting for van der Waals interaction. J. Mech. Phys. Solids, 53, 303–326.10.1016/j.jmps.2004.08.003Search in Google Scholar

23. Tan, H., Jiang, L.Y., Huang, Y., Liu, B., Hwang, K.C., (2007). The effect of van der Waals-based interface cohesive law on carbon nanotube-reinforced composite materials. Compos. Sci. Technol., 67, 2941–2946.10.1016/j.compscitech.2007.05.016Search in Google Scholar

24. Kelly, A., (2006). Composite materials after seventy years. J. Mater. Sci., 41, 905–912.10.1007/s10853-006-6569-9Search in Google Scholar

25. Łatka, L., Michalak, M., Jonda, E. (2019). Atmospheric plasma spraying of Al2O3+13% TiO2 coatings using external and internal injection system. Adv. Mater. Sci., 19(4), 5-17.10.2478/adms-2019-0018Search in Google Scholar

26. Musztyfaga-Staszuk, M., Czupryński, A., Kciuk, M. (2018). Investigation of mechanical and anti-corrosion properties of flame sprayed coatings. Adv. Mater. Sci., 18(4), 42-53.10.1515/adms-2017-0049Search in Google Scholar

27. Jażdżewska, M., Bartmański, M. (2021). Nanotubular Oxide Layer Formed on Helix Surfaces of Dental Screw Implants. Coatings, 11(2), 115.10.3390/coatings11020115Search in Google Scholar

28. Mele, C., Bozzini, B., (2010). Localised corrosion processes of austenitic stainless steel bipolar plates for polymer electrolyte membrane fuel cells. J. Power Sources, 195 3590-3596.10.1016/j.jpowsour.2009.11.144Search in Google Scholar

29. Łatka, L., Michalak, M., Szala, M., Walczak, M., Sokołowski, P., Ambroziak, A., (2021). Influence of 13 wt% TiO2 content in alumina-titania powders on microstructure, sliding wear and cavitation erosion resistance of APS sprayed coatings. Surf. Coat. Technol., 410, 126979.10.1016/j.surfcoat.2021.126979Search in Google Scholar

30. Klimpel, A., Dobrzanski, L.A., Lisiecki, A., Janicki, D., (2005). The study of properties of Ni-W2C and Co-W2C powders thermal sprayed deposits. J. Mater. Process. Technol., 164, 1068-1073.10.1016/j.jmatprotec.2005.02.198Search in Google Scholar

31. Winnicki, M., Baszczuk, A., Jasiorski, M., Małachowska, A., (2017). Corrosion resistance of copper coatings deposited by cold spraying. J. Therm. Spray Technol., 26, 1935–1946.10.1007/s11666-017-0646-2Search in Google Scholar

32. Mele, C., Lionetto, F., Bozzini, B., (2020). An erosion-corrosion investigation of coated steel for applications in the oil and gas field, based on bipolar electrochemistry. Coatings, 10(2), 92.10.3390/coatings10020092Search in Google Scholar

33. Czupryński, A., Górka, J., Adamiak, M., (2016). Examining properties of arc sprayed nanostructured coatings. Metalurgija, 55, 173–176.Search in Google Scholar

34. Adamiak, M., Czupryński, A., Kopyść, A., Monica, Z., Olender, M., Gwiazda, A., (2018). The properties of arc-sprayed aluminum coatings on armor-grade steel. Metals, 8, 142.10.3390/met8020142Search in Google Scholar

35. Lisiecki, A. Titanium Matrix Composite Ti/TiN Produced by Diode Laser Gas Nitriding. Metals, 2015, 5, 54–69.10.3390/met5010054Search in Google Scholar

36. Szala, M., Łatka, L., Awtoniuk, M., Winnicki, M., Michalak, M., (2020). Neural modelling of APS thermal spray process parameters for optimizing the hardness, porosity and cavitation erosion resistance of Al2O3-13 wt% TiO2 coatings. Processes, 8(12), 1544.10.3390/pr8121544Search in Google Scholar

37. Dobrzanski, L.A., Klimpel, A., Bonek, M., Lisiecki, A., (2003). Surface-layer’s structure of X40CrMoV5-1 steel remelted and/or WC alloyed with HPDL laser. Mater. Sci. Forum, 437-4, 69-72.10.4028/www.scientific.net/MSF.437-438.69Search in Google Scholar

38. Klimpel, A., Dobrzanski, L.A., Lisiecki, A., Janicki, D., (2006). The study of the technology of laser and plasma surfacing of engine valves face made of X40CrSiMo10-2 steel using cobalt-based powders. J. Mater. Process. Technol., 175, 251-256.10.1016/j.jmatprotec.2005.04.050Search in Google Scholar

39. Laha, T., Agarwal, A., McKechnie, T., Seal, S., (2004). Synthesis and characterization of plasma spray formed carbon nanotube reinforced aluminum composite. Mater. Sci. Eng. A, 381, 249–258.10.1016/j.msea.2004.04.014Search in Google Scholar

40. Łatka, L., Biskup, P., (2020). Development in PTA surface modifications a review. Adv. Mater. Sci., 20(2), 39-53.10.2478/adms-2020-0009Search in Google Scholar

41. Tomków, J., Czupryński, A., Fydrych, D. (2020). The abrasive wear resistance of coatings manufactured on high-strength low-alloy (HSLA) offshore steel in wet welding conditions. Coatings, 10(3), 219.10.3390/coatings10030219Search in Google Scholar

42. Wei, X., Wang, M. S., Bando, Y., Golberg, D., (2011). Thermal stability of carbon nanotubes probed by anchored tungsten nanoparticles. Sci. Technol. Adv. Mater., 12, 1–6.10.1088/1468-6996/12/4/044605509049127877413Search in Google Scholar

43. Czupryński, A., Górka, J., Adamiak, M., Tomiczek, B., (2016). Testing of flame sprayed Al2O3 matrix coatings containing TiO2. Arch. Metall. Mater., 61, 1363–1370.10.1515/amm-2016-0224Search in Google Scholar

44. Moreno-Soriano, R., Soriano-Moranchel, F., Flores-Herrera, L.A., Sandoval-Pineda, J.M., de Guadalupe González-Huerta, R., (2020). Thermal Efficiency of Oxyhydrogen Gas Burner. Energies, 13, 5526.10.3390/en13205526Search in Google Scholar

45. Mele, C., Bocchetta, P., Bozzini, B., (2017). Characterization of the particulate anode of a laboratory flow Zn-air fuel cell. J. Appl. Electrochem., 47, 877-888.10.1007/s10800-017-1088-8Search in Google Scholar

46. Tuinstra, F, Koenig, J.L., (1970). Raman spectrum of graphite. J. Chem. Phys. 53, 1126–1130. https://doi.org/10.1063/1.1674108.10.1063/1.1674108Search in Google Scholar

47. Pimenta, M.A, Dresselhaus, G, Dresselhaus, M.S, Cancado, L.G., Jorio, A., Saito, R., (2007). Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys., 9, 1276–1290.10.1039/B613962KSearch in Google Scholar

48. Hejwowski, T., (2009). Erosive and abrasive wear resistance of overlay coatings. Vacuum, 83, 166–170.10.1016/j.vacuum.2008.03.029Search in Google Scholar

eISSN:
2083-4799
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Materialwissenschaft, Funktionelle und Intelligente Materialien