1. bookVolumen 20 (2020): Heft 3 (September 2020)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2083-4799
Erstveröffentlichung
23 Sep 2008
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
Uneingeschränkter Zugang

Effect of Temperature on the Properties of Nickel Sulfide Films Performed by Spray Pyrolysis Technique

Online veröffentlicht: 22 Sep 2020
Volumen & Heft: Volumen 20 (2020) - Heft 3 (September 2020)
Seitenbereich: 36 - 51
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2083-4799
Erstveröffentlichung
23 Sep 2008
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch

1. Kumar V., Sharma D.K., Sharma K., Dwivedi D.K., Investigation on physical properties of polycrystalline nickel sulphide films grown by simple & economical screen-printing method, Optik 156 (2018) 43–48.10.1016/j.ijleo.2017.10.169Search in Google Scholar

2. Kershaw S.V., Susha A.S., Rogach A.L., Narrow bandgap colloidal metal chalcogenide quantum dots: synthetic methods, heterostructures, assemblies, electronic and infrared optical properties, Chem. Soc. Rev. 42 (2013) 3033–3087.Search in Google Scholar

3. Chand P., R. Ghosh, Sukriti, Investigation of structural, morphological and optical properties of Zn doped CdS nanostructures synthesized via co-precipitation method, Optik 161 (2018) 44–53.10.1016/j.ijleo.2018.02.031Search in Google Scholar

4. He J., Mei Y., Zheng W.C., United calculation of the optical and EPR spectral data for Co2+-doped CdS crystal, Optik 194 (2019) 163087.Search in Google Scholar

5. Behboudnia M., Majlesara M.H., Khanbabaee B., Preparation of ZnS nanorods by ultrasonic waves, Mater. Sci. Eng. B 122 (2005) 160–163.10.1016/j.mseb.2005.05.001Search in Google Scholar

6. Kristl M., Gyergyek S., Kristl J., Synthesis and characterization of nanosized silver chalcogenides under ultrasonic irradiation, Mater. Express 5 (2015) 359–366.10.1166/mex.2015.1245Search in Google Scholar

7. Erken O., Gunes M., Kirmizigul F., Gumus C., Investigation of properties the copper sulfide thin films prepared from different copper salts, Optik 168 (2018) 884–891.10.1016/j.ijleo.2018.05.031Search in Google Scholar

8. Xu H., Wang W., Zhu W., Sonochemical synthesis of crystalline CuS nanoplates via an in situ template route, Mater. lett. 60 (2006) 2203–220610.1016/j.matlet.2005.12.098Search in Google Scholar

9. Kristl M., Hojnik N., Gyergyek S., M. Drofenik, Sonochemical preparation of copper sulfides with different phases in aqueous solutions, Mater. Res. Bull. 48 (2013) 1184–1188.10.1016/j.materresbull.2012.12.020Search in Google Scholar

10. Majid S., Ahmad K.S., Analysis of dopant concentration effect on optical and morphological properties of PVD coated Cu-doped Ni3S2 thin films, Optik 187 (2019) 152–163.10.1016/j.ijleo.2019.05.025Search in Google Scholar

11. Yin P.F., Sun L.L., Zhou C., Sun Y.H., Han X.Y., Deng C.R., Characterization and magnetic property of 3D flower-like nickel sulphide nanocrystals through decomposing bis(thiourea) nickel(II) chloride crystals, Bull. Mater. Sci. 38 (2015) 95–99.10.1007/s12034-014-0815-6Search in Google Scholar

12. Surendran S., Sankar K.V., Berchmans L.J., Selvan R.K., Polyol synthesis of α-NiS particles and its physic-chemical properties, Mater. Sci. Semicon. Proc. 33 (2015) 16–23.10.1016/j.mssp.2015.01.012Search in Google Scholar

13. Kim H.J., Yeo T.B., Kim S.K., Rao S.S., Savariraj A.D., Prabakar K., Gopi C.V. V.M., Optimal-Temperature-Based Highly Efficient NiS Counter Electrode for Quantum-Dot-Sensitized Solar Cells, Eur. J. Inorg. Chem. (2014) 4281–4286.10.1002/ejic.201402026Search in Google Scholar

14. Kim H.J., Kim S.W., Gopi C.V.V.M., Kim S.K., Rao S.S., Jeong M.S., Improved performance of quantum dot-sensitized solar cells adopting a highly efficient cobalt sulfide/nickel sulfide composite thin film counter electrode, J. Power Sources 268 (2014) 163–170.10.1016/j.jpowsour.2014.06.007Search in Google Scholar

15. Gopi C.V.V.M., Rao S.S., Kim S.-K., Punnoose D., Kim H.-J., Highly effective nickel sulfide counter electrode catalyst prepared by optimal hydrothermal treatment for quantum dot-sensitized solar cells, J. Power Sources 275 (2015) 547–556.10.1016/j.jpowsour.2014.11.038Search in Google Scholar

16. Sun C.C., Ma M.Z., Yang J., Zhang Y.F., Chen P., Huang W., Dong X.C., Phase-controlled synthesis of alpha-NiS nanoparticles confined in carbon nanorods for high performance supercapacitors, Sci. rep. 4 (2014) 7054.Search in Google Scholar

17. Chen H.C., Jiang J.J., Zhao Y.D., Zhang L., Guo D.Q., Xia D.D., One-pot synthesis of porous nickel cobalt sulphides: tuning the composition for superior pseudocapacitance, J. Mate. Chem. A 3 (2015) 428–437.Search in Google Scholar

18. Yu L., Yang B., Liu Q., Liu J., Wang X., Song D., Wang J., Jing X., Interconnected NiS nanosheets supported by nickel foam: Soaking fabrication and supercapacitors application, J. Electroanal. Chem. 739 (2015) 156–163.Search in Google Scholar

19. Wang Y., Zhu Q.S., Tao L., Su X.W., Controlled synthesis of NiS hierarchical hollow microspheres with different building blocks and their application in lithium batteries, J. Mater. Chem. 21 (2011) 9248–9254.10.1039/c1jm10271kSearch in Google Scholar

20. Tao H.C., Yang X.L., Zhang L.L., Ni B.B., One step synthesis of nickel sulfide/N-doped graphene composite as anode material for lithium ion batteries, J. Electroanal. Chem. 739 (2015) 36–42.10.1016/j.jelechem.2014.10.035Search in Google Scholar

21. Zhang Z.J., Zhao H.L., Zeng Z.P., Gao C.H., Wang J., Xia Q., Hierarchical architecture NiS@SiO2 nanoparticles enveloped in grapheme sheets as anode material for lithium ion batteries, Electrochim. Acta 155 (2014) 85–92.10.1016/j.electacta.2014.12.074Search in Google Scholar

22. Balayeva O.O., Azizov A.A., Muradov M.B., Maharramov A.M., Eyvazova G.M., Alosmanov R.M., Mamiyev Z.Q., Aghamaliyev Z.A., β-NiS and Ni3S4 nanostructures: Fabrication and characterization, Mater. Res. Bull. 75 (2016) 155-161.Search in Google Scholar

23. Shinde N.M., Xia Q.X., Shinde P.V., Yun J.M., Mane R.S., Kim K.H., Sulphur Source-Inspired Self-Grown 3D NixSy Nanostructures and Their Electrochemical Supercapacitors, ACS Appl. Mater. Inter. 11 (2019) 4551-4559.10.1021/acsami.8b17689Search in Google Scholar

24. Lee H., Kanai M., Kawai T., Kawai S., Growth of Oriented NiS Films on Si(111) and Al2O3(O12) Substrate by Pulsed Laser Ablation, Jpn. J. Appl. Phys. 32 (1993) 2100.Search in Google Scholar

25. Sartale S.D., Lokhande C.D., Preparation and characterization of nickel sulphide thin films using successive ionic layer adsorption and reaction (SILAR) method, Mater. Chem. Phys. 72 (2001) 101-104.10.1016/S0254-0584(01)00314-5Search in Google Scholar

26. Yu S.H., Yoshimura M., Fabrication of Powders and Thin Films of Various Nickel Sulfides by Soft Solution-Processing Routes, Adv. Funct. Mater. 12 (2002) 277-285.10.1002/1616-3028(20020418)12:4<277::AID-ADFM277>3.0.CO;2-MSearch in Google Scholar

27. Zhang L., Yu J.C., Mo M., Wu L., Li Q., Kwong K.W., General Solution-Phase Approach to Oriented Nanostructured Films of Metal Chalcogenides on Metal Foils:  The Case of Nickel Sulfide, J. Am. Chem. Soc. 126 (2004) 8116–8117.10.1021/ja0484505Search in Google Scholar

28. Akhtar M., Revaprasadu N., Malik M.A., Raftery J., Deposition of phase pure nickel sulfide thin films from bis(O-alkylxanthato)–nickel(II) complexes by the aerosolassisted chemical vapour deposition (AACVD) method, Mater. Sci. Semicon. Proc. 30 (2015) 368–375.10.1016/j.mssp.2014.10.023Search in Google Scholar

29. Mahadik A.S., Khalate S.A., Kate R.S., Deokate R.J., Chemical Spray Deposited Nickel Sulphide Thin Films for Supercapacitor applications, I. Res. J. Sci. Eng. Special Issue A1 (2017) 195–198.Search in Google Scholar

30. Cheng Z., Abernathy H., Liu M., Raman Spectroscopy of Nickel Sulfide Ni3S2, J. Phys. Chem. C 111 (2007) 17997-18000.10.1021/jp0770209Search in Google Scholar

31. Saeed S., Rashid N., Growth and characterization of semiconducting nickel sulfide nanocrystals from air-stable single-source metal organic precursors, Cogent Chem. 1 (2015) 1030195.Search in Google Scholar

32. Chen F., Yang H., Wang X., Yu H., Facile synthesis and enhanced photocatalytic H2-evolution performance of NiS2-modified g-C3N4 photocatalysts, Chinese J. Catal. 38 (2017) 296–304.10.1016/S1872-2067(16)62554-8Search in Google Scholar

33. Benramache S., Aoun Y., Lakel S., Benhaoua B., Torchi C., The calculate of optical gap energy and urbach energy of Ni1−xCoxO thin films, Sādhanā 44 (2018) 26.Search in Google Scholar

34. Klug H.P., Alexander L.E., X-ray diffraction procedures: for polycrystalline and amorphous materials, X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd Edition, by Harold P. Klug, Leroy E. Alexander, pp. 992. ISBN 0-471-49369-4. Wiley-VCH, May 1974, p. 992, 1974.Search in Google Scholar

35. Ho T.A., Bae C.k., Nam H., Kim E., Lee S.Y., Park J.H., Shin H., Metallic Ni3S2 Films Grown by Atomic Layer Deposition as an Efficient and Stable Electrocatalyst for Overall Water Splitting, ACS Appl. Mater. Inter. 16 (2018) 12807–12815.Search in Google Scholar

36. Dias da Silva J., Campomanes R., Leite D., Orapunt F., O’Leary S.K., Relationship between the optical gap and the optical-absorption tail breadth in amorphous GaAs, J. appl. Phys. 96 (2004) 7052-7059.10.1063/1.1797541Search in Google Scholar

37. Tauc J., Menth A., States in the gap, J. non-cryst. Solids 8 (1972) 569-585.10.1016/0022-3093(72)90194-9Search in Google Scholar

38. Urbach F., The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids, Phys. Rev. 92 (1953) 1324.Search in Google Scholar

39. Benramache S., Aouassa M., Preparation and Characterization of p‒Type Semiconducting NiO Thin Films Deposited by Sol‒Gel Technique, J. Chem. Mater. Res. 5 (2016) 119–122.Search in Google Scholar

40. Schmachtenberg V.A.V., Tontini G., Koch J.A., Semione G.D.L., Drago V., Low temperature solventless syntheses of nanocrystalline nickel sulfides with different sulfur sources, J. Phys. Chem. Solids 87 (2015) 253–258.10.1016/j.jpcs.2015.09.005Search in Google Scholar

41. Reddy A.J., Kokila M.K., Nagabhushana H., Sharma S.C., Rao J.L., Shivakumara C., Nagabhushana B.M., R.P.S. Chakradhar, Structural, EPR, photo and thermoluminescence properties of ZnO:Fe nanoparticles, Mater. Chem. Phys. 133 (2012) 876-883.10.1016/j.matchemphys.2012.01.111Search in Google Scholar

42. Boughalmi R., Boukhachem A., Kahlaoui M., Maghraoui H., Amlouk M., Physical investigations on Sb2S3 sprayed thin film for optoelectronic applications, Mater. Sci. Semicon. Proc. 26 (2014) 593-602.10.1016/j.mssp.2014.05.059Search in Google Scholar

43. Caglar M., Ilican S., Caglar Y., Influence of dopant concentration on the optical properties of ZnO: in films by sol–gel method, Thin Solid Films 517 (2009) 5023-5028.10.1016/j.tsf.2009.03.037Search in Google Scholar

44. J. Tauc, A. Menth, States in the gap, J. Non-Cryst. Solids 8-10 (1972) 569-585.10.1016/0022-3093(72)90194-9Search in Google Scholar

45. Slama S., Bouhafs M., Ben Mahmoud K.B., Boubaker A, polynomials solution to heat equation for monitoring A3 point evolution during resistance spot welding, I. J. Heat Techn. 26 (2008) 141-149.Search in Google Scholar

46. Pankove J.I., in: Optical Processes in Semiconductors, Prentice-Hall, New Jersey, 1971, p. 92Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo