Uneingeschränkter Zugang

Electrochemical Characterization of Gelatine Derived Ceramics


Zitieren

1. Pistoia G.: Lithium batteries: New materials, Developments, and Perspectives. Elsevier, Amsterdam, 1994.Search in Google Scholar

2. Takami N., Satoh A., Hara M., Ohsaki T.: Rechargeable Lithium-Ion Cells Using Graphitized Mesophase-Pitch-Based Carbon Fiber Anodes. J Electrochem Soc 142 (1995) 2564-2571.Search in Google Scholar

3. Ahn D., Raj R.: Cyclic stability and C-rate performance of amorphous silicon and carbon based anodes for electrochemical storage of lithium. J Power Sources 196 (2011) 2179-2186.Search in Google Scholar

4. Fukui H., Eguchi K., Ohsuka H., Hino T., Kanamura K.: Structures and lithium storage performance of Si-O-C composite materials depending on pyrolysis temperatures. J Power Sources 243 (2013) 152-158.Search in Google Scholar

5. Sanchez-Jimenez P.E., Raj R.: Lithium Insertion in Polymer-Derived Silicon Oxycarbide Ceramics. J Am Ceram Soc 93 (2010) 1127-1135.Search in Google Scholar

6. Dibandjo P., Graczyk-Zajac M., Riedel R., Pradeep V.S., Soraru G.D.: Lithium insertion into dense and porous carbon-rich polymer-derived SiOC ceramics. J Eur Ceram Soc 32 (2012) 2495-2503.Search in Google Scholar

7. Graczyk-Zajac M., Toma L., Fasel C., Riedel R.: Carbon-rich SiOC anodes for lithium-ion batteries: Part I. Influence of material UV-pre-treatment on high power properties. Solid State Ionics 225 (2012) 522-526.Search in Google Scholar

8. Kaspar J., Graczyk-Zajac M., Riedel R.: Lithium insertion into carbon-rich SiOC ceramics: Influence of pyrolysis temperature on electrochemical properties. J Power Sources 244 (2013) 450-455.Search in Google Scholar

9. Graczyk-Zajac M., Mera G., Kaspar J., Riedel R.: Electrochemical studies of carbon-rich polymer-derived SiCN ceramics as anode materials for lithium-ion batteries. J Eur. Ceram. Soc. 30 (2010) 3235-3243.Search in Google Scholar

10. Li W., Chen M., Wang C.: Spherical hard carbon prepared from potato starch using as anode material for Li-ion batteries. Mater Lett 65 (2011) 3368-3370.Search in Google Scholar

11. Nowak A.P., Wicikowska B., Lisowska-Oleksiak A.: New ceramic materials derived from pyrolyzed poly(1,2-dimethylsilazane) and starch as a potential anode for Li-ion batteries. Solid State Ionics 263 (2014) 131-139.Search in Google Scholar

12. Tuinstra F., Koenig J.I.: Raman Spectrum of Graphite. J Chem Phys 53 (1970) 1126-1130.Search in Google Scholar

13. Ferrari A.C., Robertson J.: Interpretation of Raman spectra of disordered and amorphous carbon. Physial Rev B 61 (2000) 14095-14107.Search in Google Scholar

14. Cançado L.G., Takai K., Enoki T., i in.: General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl Phys Lett 88 (2006) 163106(1)-163106(3).Search in Google Scholar

eISSN:
2083-4799
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Materialwissenschaft, Funktionelle und Intelligente Materialien