Zitieren

Kaszak I, Ruszczak A, Kanafa S, Kacprzak K, Król M, Jurka P: Current biomarkers of canine mammary tumors. Acta Ve t Scand 2018, 60(1):66. Search in Google Scholar

Gherman LM, Chiroi P, Nuţu A, Bica C, Berindan-Neagoe I: Profiling canine mammary tumors: A potential model for studying human breast cancer. Vet J 2023, 303:106055. Search in Google Scholar

Gherman ML, Zanoaga O, Budisan L, Raduly L, Berindan-Neagoe I: Doxorubicin as a Potential Treatment Option in Canine Mammary Tumors. Vet Sci 2023, 10(11). Search in Google Scholar

Burrai GP, Gabrieli A, Moccia V, Zappulli V, Porcellato I, Brachelente C, Pirino S, Polinas M, Antuofermo E: A Statistical Analysis of Risk Factors and Biological Behavior in Canine Mammary Tumors: A Multicenter Study. Animals (Basel) 2020, 10(9). Search in Google Scholar

Tavasoly A, Golshahi H, Rezaie A, Farhadi M: Classification and grading of canine malignant mammary tumors. Vet Res Forum 2013, 4(1):25–30. Search in Google Scholar

Shafiee R, Javanbakht J, Atyabi N, Kheradmand P, Kheradmand D, Bahrami A, Daraei H, Khadivar F: Diagnosis, classification and grading of canine mammary tumours as a model to study human breast cancer: an Clinico-Cytohistopathological study with environmental factors influencing public health and medicine. Cancer Cell Int 2013, 13:79. Search in Google Scholar

Hughes K, Dobson JM: Prognostic histopathological and molecular markers in feline mammary neoplasia. The Veterinary Journal 2012, 194(1):19–26. Search in Google Scholar

Huang S, Wa Q, Pan J, Peng X, Ren D, Huang Y, Chen X, Tang Y: Downregulation of miR-141-3p promotes bone metastasis via activating NF-κB signaling in prostate cancer. J Exp Clin Cancer Res 2017, 36(1):173. Search in Google Scholar

Chiorean R, Braicu C, Berindan-Neagoe I: Another review on triple negative breast cancer. Are we on the right way towards the exit from the labyrinth? Breast 2013, 22(6):1026–1033. Search in Google Scholar

Zimta AA, Tigu AB, Muntean M, Cenariu D, Slaby O, Berindan-Neagoe I: Molecular Links between Central Obesity and Breast Cancer. Int J Mol Sci 2019, 20(21). Search in Google Scholar

Raduly L, Cojocneanu-Petric R, Sarpataki O, Chira S, Atanasov AG, Braicu C, Berindan-Neagoe I, Marcus I: Canis lupus familiaris as relevant animal model for breast cancer – A comparative oncology review. Animal Science Papers and Reports 2018, 36(2):119–148. Search in Google Scholar

Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell 2011, 144(5):646–674. Search in Google Scholar

Estaller A, Kessler M, Wehrend A, Hirschberger J, Neumann S: Utility of Serum Ki-67 as a Marker for Malignancy in Dogs. Animals (Basel) 2022, 12(10). Search in Google Scholar

Salaritabar A, Berindan-Neagoe I, Darvish B, Hadjiakhoondi F, Manayi A, Devi KP, Barreca D, Orhan IE, Süntar I, Farooqi AA et al: Targeting Hedgehog signaling pathway: Paving the road for cancer therapy. Pharmacol Res 2019, 141:466–480. Search in Google Scholar

Scholzen T, Gerdes J: The Ki-67 protein: from the known and the unknown. J Cell Physiol 2000, 182(3):311–322. Search in Google Scholar

Gerdes J, Li L, Schlueter C, Duchrow M, Wohlenberg C, Gerlach C, Stahmer I, Kloth S, Brandt E, Flad HD: Immunobiochemical and molecular biologic characterization of the cell proliferation-associated nuclear antigen that is defined by monoclonal antibody Ki-67. Am J Pathol 1991, 138(4):867–873. Search in Google Scholar

Cuylen S, Blaukopf C, Politi AZ, Müller-Reichert T, Neumann B, Poser I, Ellenberg J, Hyman AA, Gerlich DW: Ki-67 acts as a biological surfactant to disperse mitotic chromosomes. Nature 2016, 535(7611):308–312. Search in Google Scholar

Neumann S, Schuettler J, Frenz M, Kaup FJ, Gessler F: Investigation of serum Ki-67 as a biomarker in tumor-bearing dogs. Res Vet Sci 2017, 110:16–21. Search in Google Scholar

Strzalka W, Ziemienowicz A: Proliferating cell nuclear antigen (PCNA): a key factor in DNA replication and cell cycle regulation. Ann Bot 2011, 107(7):1127–1140. Search in Google Scholar

Juríková M, Danihel Ľ, Polák Š, Varga I: Ki67, PCNA, and MCM proteins: Markers of proliferation in the diagnosis of breast cancer. Acta Histochem 2016, 118(5):544–552. Search in Google Scholar

Löhr CV, Teifke JP, Failing K, Weiss E: Characterization of the proliferation state in canine mammary tumors by the standardized AgNOR method with postfixation and immunohistologic detection of Ki-67 and PCNA. Vet Pathol 1997, 34(3):212–221. Search in Google Scholar

Peña LL, Nieto AI, Pérez-Alenza D, Cuesta P, Castaño M: Immunohistochemical detection of Ki-67 and PCNA in canine mammary tumors: relationship to clinical and pathologic variables. J Vet Diagn Invest 1998, 10(3):237–246. Search in Google Scholar

Carvalho MI, Pires I, Prada J, Lobo L, Queiroga FL: Ki-67 and PCNA Expression in Canine Mammary Tumors and Adjacent Nonneoplastic Mammary Glands: Prognostic Impact by a Multivariate Survival Analysis. Vet Pathol 2016, 53(6):1138–1146. Search in Google Scholar

Hussain S, Saxena S, Shrivastava S, Mohanty AK, Kumar S, Singh RJ, Kumar A, Wani SA, Gandham RK, Kumar N et al: Gene expression profiling of spontaneously occurring canine mammary tumours: Insight into gene networks and pathways linked to cancer pathogenesis. PLoS One 2018, 13(12):e0208656. Search in Google Scholar

Ding L, Cao J, Lin W, Chen H, Xiong X, Ao H, Yu M, Lin J, Cui Q: The Roles of Cyclin-Dependent Kinases in Cell-Cycle Progression and Therapeutic Strategies in Human Breast Cancer. Int J Mol Sci 2020, 21(6). Search in Google Scholar

Alexander A, Karakas C, Chen X, Carey JP, Yi M, Bondy M, Thompson P, Cheung KL, Ellis IO, Gong Y et al: Cyclin E overexpression as a biomarker for combination treatment strategies in inflammatory breast cancer. Oncotarget 2017, 8(9):14897–14911. Search in Google Scholar

Sana M, Malik HJ: Current and emerging breast cancer biomarkers. J Cancer Res Ther 2015, 11(3):508–513. Search in Google Scholar

Piezzo M, Cocco S, Caputo R, Cianniello D, Gioia GD, Lauro VD, Fusco G, Martinelli C, Nuzzo F, Pensabene M et al: Targeting Cell Cycle in Breast Cancer: CDK4/6 Inhibitors. Int J Mol Sci 2020, 21(18). Search in Google Scholar

Braicu C, Pileczki V, Irimie A, Berindan-Neagoe I: p53siRNA therapy reduces cell proliferation, migration and induces apoptosis in triple negative breast cancer cells. Mol Cell Biochem 2013, 381(1–2):61–68. Search in Google Scholar

Montalto FI, De Amicis F: Cyclin D1 in Cancer: A Molecular Connection for Cell Cycle Control, Adhesion and Invasion in Tumor and Stroma. Cells 2020, 9(12). Search in Google Scholar

Sfacteria A, Bertani C, Costantino G, Del Bue M, Paiardini M, Cervasi B, Piedimonte A, De Vico G: Cyclin D1 expression in pre-cancerous and cancerous lesions of the canine mammary gland. J Comp Pathol 2003, 128(4):245–251. Search in Google Scholar

Klopfleisch R, von Euler H, Sarli G, Pinho SS, Gärtner F, Gruber AD: Molecular carcinogenesis of canine mammary tumors: news from an old disease. Vet Pathol 2011, 48(1):98–116. Search in Google Scholar

Klopfleisch R, Gruber AD: Differential expression of cell cycle regulators p21, p27 and p53 in metastasizing canine mammary adenocarcinomas versus normal mammary glands. Res Vet Sci 2009, 87(1):91–96. Search in Google Scholar

Nowak M, Madej JA, Dziegiel P: Correlation between MCM-3 protein expression and grade of malignancy in mammary adenocarcinomas and soft tissue fibrosarcomas in dogs. In Vivo 2009, 23(1):49–53. Search in Google Scholar

Liu X, Liu Y, Wang Q, Song S, Feng L, Shi C: The Alterations and Potential Roles of MCMs in Breast Cancer. J Oncol 2021, 2021:7928937. Search in Google Scholar

Cheng L, Tan Z, Huang Z, Pan Y, Zhang W, Wang J: Expression Profile and Prognostic Values of Mini-Chromosome Maintenance Families (MCMs) in Breast Cancer. Med Sci Monit 2020, 26:e923673. Search in Google Scholar

Murakami Y, Tateyama S, Rungsipipat A, Uchida K, Yamaguchi R: Immunohistochemical analysis of cyclin A, cyclin D1 and P53 in mammary tumors, squamous cell carcinomas and basal cell tumors of dogs and cats. J Vet Med Sci 2000, 62(7):743–750. Search in Google Scholar

Kaszak I, Witkowska-Piłaszewicz O, Domrazek K, Jurka P: The Novel Diagnostic Techniques and Biomarkers of Canine Mammary Tumors. Vet Sci 2022, 9(10). Search in Google Scholar

Muscatello LV, Gobbo F, Di Oto E, Sarli G, De Maria R, De Leo A, Tallini G, Brunetti B: HER2 Overexpression and Cytogenetical Patterns in Canine Mammary Carcinomas. Vet Sci 2022, 9(11). Search in Google Scholar

Araújo MR, Campos LC, Damasceno KA, Gamba CO, Ferreira E, Cassali GD: HER-2, EGFR, Cox-2 and Ki67 expression in lymph node metastasis of canine mammary carcinomas: Association with clinical-pathological parameters and overall survival. Res Vet Sci 2016, 106:121–130. Search in Google Scholar

Aydogan A, Ozmen O, Haligur M, Sipahi C, Ileri D, Haligur A: Immunohistochemical evaluation of bcl-2, ER-alpha, caspase – 3, – 8, – 9, PCNA and Ki-67 expressions in canine mammary carcinomas. Biotech Histochem 2018, 93(4):286–292. Search in Google Scholar

Kumaraguruparan R, Prathiba D, Nagini S: Of humans and canines: Immunohistochemical analysis of PCNA, Bcl-2, p53, cytokeratin and ER in mammary tumours. Res Vet Sci 2006, 81(2):218–224. Search in Google Scholar

Sankari SL, Masthan KM, Babu NA, Bhattacharjee T, Elumalai M: Apoptosis in cancer— an update. Asian Pac J Cancer Prev 2012, 13(10):4873–4878. Search in Google Scholar

Yang ZJ, Chee CE, Huang S, Sinicrope FA: The role of autophagy in cancer: therapeutic implications. Mol Cancer Ther 2011, 10(9):1533–1541. Search in Google Scholar

Chude CI, Amaravadi RK: Targeting Autophagy in Cancer: Update on Clinical Trials and Novel Inhibitors. Int J Mol Sci 2017, 18(6). Search in Google Scholar

Lane DP: Cancer. p53, guardian of the genome. Nature 1992, 358(6381):15–16. Search in Google Scholar

Artandi SE, Attardi LD: Pathways connecting telomeres and p53 in senescence, apoptosis, and cancer. Biochem Biophys Res Commun 2005, 331(3):881–890. Search in Google Scholar

Krock BL, Skuli N, Simon MC: Hypoxia-induced angiogenesis: good and evil. Genes Cancer 2011, 2(12):1117–1133. Search in Google Scholar

Mees G, Vangestel C, Dierckx R, Loomans S, Van Damme N, Peremans K, De Rooster H, Van Goethem B, Pauwels P, Ducatelle R et al: Metabolic correlates of tumour hypoxia in malignant canine mammary carcinoma. Res Vet Sci 2011, 91(3):e125–128. Search in Google Scholar

Kim TH, Lee JH, An JH, Ko BG, Kim KB, Youn HY: Hypoxia Increases the Proliferative and Metastatic Ability of Canine Mammary Tumor Cells via Up-regulation of TSG-6. Anticancer Res 2022, 42(12):5803–5812. Search in Google Scholar

Shin JI, Lim HY, Kim HW, Seung BJ, Sur JH: Analysis of Hypoxia-Inducible Factor-1α Expression Relative to Other Key Factors in Malignant Canine Mammary Tumours. J Comp Pathol 2015, 153(2–3):101–110. Search in Google Scholar

Moschetta MG, Maschio LB, Jardim-Perassi BV, Gelaleti GB, Lopes JR, Leonel C, Gonçalves Ndo N, Ferreira LC, Martins GR, Borin TF et al: Prognostic value of vascular endothelial growth factor and hypoxia-inducible factor 1α in canine malignant mammary tumors. Oncol Rep 2015, 33(5):2345–2353. Search in Google Scholar

Abdelmegeed SM, Mohammed S: Canine mammary tumors as a model for human disease. Oncol Lett 2018, 15(6):8195–8205. Search in Google Scholar

Ribatti D, Tamma R, Annese T: Epithelial-Mesenchymal Transition in Cancer: A Historical Overview. Translational Oncology 2020, 13(6):100773. Search in Google Scholar

Gray M, Meehan J, Martínez-Pérez C, Kay C, Turnbull AK, Morrison LR, Pang LY, Argyle D: Naturally-Occurring Canine Mammary Tumors as a Translational Model for Human Breast Cancer. Front Oncol 2020, 10:617. Search in Google Scholar

Raposo-Ferreira TMM, Brisson BK, Durham AC, Laufer-Amorim R, Kristiansen V, Puré E, Volk SW, Sorenmo K: Characteristics of the Epithelial-Mesenchymal Transition in Primary and Paired Metastatic Canine Mammary Carcinomas. Vet Pathol 2018, 55(5):622–633. Search in Google Scholar

Leonel C, Borin TF, de Carvalho Ferreira L, Moschetta MG, Bajgelman MC, Viloria-Petit AM, de Campos Zuccari DA: Inhibition of Epithelial-Mesenchymal Transition and Metastasis by Combined TGFbeta Knockdown and Metformin Treatment in a Canine Mammary Cancer Xenograft Model. J Mammary Gland Biol Neoplasia 2017, 22(1):27–41. Search in Google Scholar

Xavier PLP, Cordeiro YG, Rochetti AL, Sangalli JR, Zuccari D, Silveira JC, Bressan FF, Fukumasu H: ZEB1 and ZEB2 transcription factors are potential therapeutic targets of canine mammary cancer cells. Vet Comp Oncol 2018, 16(4):596–605. Search in Google Scholar

Sammarco A, Gomiero C, Beffagna G, Cavicchioli L, Ferro S, Michieletto S, Orvieto E, Patruno M, Zappulli V: Epithelial-to-Mesenchymal Transition and Phenotypic Marker Evaluation in Human, Canine, and Feline Mammary Gland Tumors. Animals (Basel) 2023, 13(5). Search in Google Scholar

Braicu C, Chiorean R, Irimie A, Chira S, Tomuleasa C, Neagoe E, Paradiso A, Achimas-Cadariu P, Lazar V, Berindan-Neagoe I: Novel insight into triple-negative breast cancers, the emerging role of angiogenesis, and antiangiogenic therapy. Expert Rev Mol Med 2016, 18:e18. Search in Google Scholar

Sakalauskaitė S, Šaltenienė V, Nikitina D, Ugenskienė R, Riškevičienė V, Karvelienė B, Juodžiukynienė N: VEGF-B, VEGF-A, FLT-1, KDR, ERBB2, EGFR, GRB2, RAC1, CDH1 and HYAL-1 Genes Expression Analysis in Canine Mammary Gland Tumors and the Association with Tumor ClinicoPathological Parameters and Dog Breed Assessment. Vet Sci 2021, 8(10). Search in Google Scholar

Prado MCM, Macedo SAL, Guiraldelli GG, de Faria Lainetti P, Leis-Filho AF, Kobayashi PE, Laufer-Amorim R, Fonseca-Alves CE: Investigation of the Prognostic Significance of Vasculogenic Mimicry and Its Inhibition by Sorafenib in Canine Mammary Gland Tumors. Front Oncol 2019, 9:1445. Search in Google Scholar

Carvalho MI, Guimarães MJ, Pires I, Prada J, Silva-Carvalho R, Lopes C, Queiroga FL: EGFR and microvessel density in canine malignant mammary tumours. Res Vet Sci 2013, 95(3):1094–1099. Search in Google Scholar

Queiroga FL, Pires I, Parente M, Gregório H, Lopes CS: COX-2 over-expression correlates with VEGF and tumour angiogenesis in canine mammary cancer. Vet J 2011, 189(1):77–82. Search in Google Scholar

Guimarães MJ, Carvalho MI, Pires I, Prada J, Gil AG, Lopes C, Queiroga FL: Concurrent expression of cyclo-oxygenase-2 and epidermal growth factor receptor in canine malignant mammary tumours. J Comp Pathol 2014, 150(1):27–34. Search in Google Scholar

Xu E, Hu M, Liu Y: Aspirin inhibits proliferation and metastasis of canine mammary gland tumor cells through Wnt signaling axis. Transl Cancer Res 2021, 10(2):589–601. Search in Google Scholar

Rajakylä K, Krishnan R, Tojkander S: Analysis of Contractility and Invasion Potential of Two Canine Mammary Tumor Cell Lines. Front Vet Sci 2017, 4:149. Search in Google Scholar

de Oliveira JT, Ribeiro C, Barros R, Gomes C, de Matos AJ, Reis CA, Rutteman GR, Gärtner F: Hypoxia Up-Regulates Galectin-3 in Mammary Tumor Progression and Metastasis. PLoS One 2015, 10(7):e0134458. Search in Google Scholar

Klopfleisch R, Lenze D, Hummel M, Gruber AD: Metastatic canine mammary carcinomas can be identified by a gene expression profile that partly overlaps with human breast cancer profiles. BMC Cancer 2010, 10:618. Search in Google Scholar

Ren X, Fan Y, Shi D, Liu Y: Expression and significance of IL-6 and IL-8 in canine mammary gland tumors. Scientific Reports 2023, 13(1):1302. Search in Google Scholar

Jang H, Choi J, Park JK, Won G, Seol JW: Fucoxanthin Exerts Anti-Tumor Activity on Canine Mammary Tumor Cells via Tumor Cell Apoptosis Induction and Angiogenesis Inhibition. Animals (Basel) 2021, 11(6). Search in Google Scholar

Liu Y, Li W, Guo M, Li C, Qiu C: Protective Role of Selenium Compounds on the Proliferation, Apoptosis, and Angiogenesis of a Canine Breast Cancer Cell Line. Biol Trace Elem Res 2016, 169(1):86–93. Search in Google Scholar

Lavalle GE, Bertagnolli AC, Tavares WL, Cassali GD: Cox-2 expression in canine mammary carcinomas: correlation with angiogenesis and overall survival. Vet Pathol 2009, 46(6):1275–1280. Search in Google Scholar

Gama A, Gärtner F, Alves A, Schmitt F: Immunohistochemical expression of Epidermal Growth Factor Receptor (EGFR) in canine mammary tissues. Res Vet Sci 2009, 87(3):432–437. Search in Google Scholar

Klopfleisch R, Lenze D, Hummel M, Gruber AD: The metastatic cascade is reflected in the transcriptome of metastatic canine mammary carcinomas. Vet J 2011, 190(2):236–243. Search in Google Scholar

Qiu CW, Lin DG, Wang JQ, Li CY, Deng GZ: Expression and significance of PTEN and VEGF in canine mammary gland tumours. Vet Res Commun 2008, 32(6):463–472. Search in Google Scholar

Rezaee M, Movassaghi AR, Maleki M: Immunohistochemical expression of transforming growth factor Beta-1 in canine mammary carcinomas: its relationships with histologic grading, survival rate, and recurrence. Comparative Clinical Pathology 2017, 26(3):519–524. Search in Google Scholar

Carvalho MI, Pires I, Prada J, Pinto C, Gregório H, Cogliati B, Queiroga FL: Assessing the Interleukin 35 Immunoexpression in Malignant Canine Mammary Tumors: Association With Clinicopathological Parameters and Prognosis. Anticancer Res 2019, 39(4):2077–2083. Search in Google Scholar

Rybicka A, Król M: Identification and characterization of cancer stem cells in canine mammary tumors. Acta Vet Scand 2016, 58(1):86. Search in Google Scholar

Michishita M: Understanding of tumourigenesis in canine mammary tumours based on cancer stem cell research. The Veterinary Journal 2020, 265:105560. Search in Google Scholar

Michishita M, Ochiai K, Nakahira R, Azakami D, Machida Y, Nagashima T, Nakagawa T, Ishiwata T: mTOR pathway as a potential therapeutic target for cancer stem cells in canine mammary carcinoma. Front Oncol 2023, 13:1100602. Search in Google Scholar

Zamani-Ahmadmahmudi M: Embryonic stem cell gene expression signatures in the canine mammary tumor: a bioinformatics approach. Apmis 2016, 124(8):659–668. Search in Google Scholar

Barreno L, Cáceres S, Alonso-Diez Á, Vicente-Montaña A, García ML, Clemente M, Illera JC, Peña L: Vasculogenic mimicry-associated ultrastructural findings in human and canine inflammatory breast cancer cell lines. BMC Cancer 2019, 19(1):750. Search in Google Scholar

Barbieri F, Thellung S, Ratto A, Carra E, Marini V, Fucile C, Bajetto A, Pattarozzi A, Würth R, Gatti M et al: In vitro and in vivo antiproliferative activity of metformin on stem-like cells isolated from spontaneous canine mammary carcinomas: translational implications for human tumors. BMC Cancer 2015, 15:228. Search in Google Scholar

Pang LY, Cervantes-Arias A, Else RW, Argyle DJ: Canine Mammary Cancer Stem Cells are Radio – and Chemo – Resistant and Exhibit an Epithelial-Mesenchymal Transition Phenotype. Cancers (Basel) 2011, 3(2):1744–1762. Search in Google Scholar

Du H, Zhou B, Zhang H, Jin Y, Zhang D, Lin D: Salinomycin inhibits canine mammary carcinoma in vitro by targeting cancer stem cells. Oncol Lett 2017, 14(1):427–432. Search in Google Scholar

Bulkowska M, Rybicka A, Senses KM, Ulewicz K, Witt K, Szymanska J, Taciak B, Klopfleisch R, Hellmén E, Dolka I et al: MicroRNA expression patterns in canine mammary cancer show significant differences between metastatic and non-metastatic tumours. BMC Cancer 2017, 17(1):728. Search in Google Scholar

Lu B, Wu J, Chen H, Li S, Jia K: LncRNA Expression Profiles in Canine Mammary Tumors Identify lnc34977 as a Promoter of Proliferation, Migration and Invasion of Canine Mammary Tumor Cells. Vet Sci 2022, 9(2). Search in Google Scholar

Kim EP, Jang G, Kim JW, Kim SW, Chung H, Yang YJ, Kim WH, Kim GA: MicroRNA and Messenger RNA Expression Profiles in Canine Mammary Gland Tumor. Int J Mol Sci 2023, 24(3). Search in Google Scholar

Agarwal P, Crepps MP, Stahr NA, Kretzschmar WP, Harris HC, Prasad N, Levy SE, Smith BF: Identification of canine circulating miRNAs as tumor biospecific markers using Next-Generation Sequencing and Q-RT-PCR. Biochem Biophys Rep 2021, 28:101106. Search in Google Scholar

Fish EJ, Martinez-Romero EG, DeInnocentes P, Koehler JW, Prasad N, Smith AN, Bird RC: Circulating microRNA as biomarkers of canine mammary carcinoma in dogs. J Vet Intern Med 2020, 34(3):1282–1290. Search in Google Scholar

Ramadan ES, Salem NY, Emam IA, AbdElkader NA, Farghali HAM, Khattab MS: MicroRNA-21 expression, serum tumor markers, and immunohistochemistry in canine mammary tumors. Veterinary Research Communications 2021, 46:377 – 388. Search in Google Scholar

Ren X, Fan Y, Shi D, Xu E, Liu Y: MicroRNA-124 inhibits canine mammary carcinoma cell proliferation, migration and invasion by targeting CDH2. Res Vet Sci 2022, 146:5–14. Search in Google Scholar

Wucher V, Legeai F, Hédan B, Rizk G, Lagoutte L, Leeb T, Jagannathan V, Cadieu E, David A, Lohi H et al: FEELnc: a tool for long non-coding RNA annotation and its application to the dog transcriptome. Nucleic Acids Res 2017, 45(8):e57. Search in Google Scholar

Le Béguec C, Wucher V, Lagoutte L, Cadieu E, Botherel N, Hédan B, De Brito C, Guillory A-S, André C, Derrien T et al: Characterisation and functional predictions of canine long non-coding RNAs. Scientific Reports 2018, 8(1):13444. Search in Google Scholar

Xu E, Hu M, Ge R, Tong D, Fan Y, Ren X, Liu Y: LncRNA-42060 Regulates Tamoxifen Sensitivity and Tumor Development via Regulating the miR-204-5p/SOX4 Axis in Canine Mammary Gland Tumor Cells. Front Vet Sci 2021, 8:654694. Search in Google Scholar

von Deetzen MC, Schmeck BT, Gruber AD, Klopfleisch R: Malignancy Associated MicroRNA Expression Changes in Canine Mammary Cancer of Different Malignancies. ISRN Vet Sci 2014, 2014:148597. Search in Google Scholar

eISSN:
1820-7448
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Medizin, Veterinärmedizin