Uneingeschränkter Zugang

Sympathetic nervous system and cardiovascular risk in mitral valve prolapse


Zitieren

1. Hayek E, Gring CN, Griffin BP. Mitral valve prolapse. Lancet. 2005; 365 (9458): 507–518. Search in Google Scholar

2. Hu X, Zhao Q. Autonomic dysregulation as a novel underlying cause of mitral valve prolapse: a hypothesis. Med Sci Monit. 2011;17 (9): 27-31. Search in Google Scholar

3. Hu X, Wang H-Z, Liu J, Chen A-Q, Ye X-F, Zhao Q. A novel role of sympathetic activity in regulating mitral valve prolapse. Circ J. 2014; 78 (6): 1486–1493. Search in Google Scholar

4. Thayer JF, Yamamoto SS, Brosschot JF. The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Int J Cardiol. 2010; 141 (2): 122–131. Search in Google Scholar

5. McEwen BS. Stress, Adaptation, and Disease: Allostasis and Allostatic Load. Ann N Y Acad Sci. 1998; 840: 33–44. Search in Google Scholar

6. Tonhajzerova I, Mestanik M. New perspectives in the model of stress response. Physiol Res. 2017; 66 (Suppl 2): 173–185. Search in Google Scholar

7. Tonhajzerová I, Mešťaník M. Psychofyziológia: od stresovej odpovede po biofeedback. Martin: VEGA; 2016. 164 pp. Search in Google Scholar

8. Brook RD, Julius S. Autonomic imbalance, hypertension, and cardiovascular risk. Am J Hypertens. 2000; 13 (6 Pt 2): 112–122. Search in Google Scholar

9. Ma JI, Igata S, Strachan M, Nishimura M, Wong DJ, Raisinghani A, DeMaria A. Predictive Factors for Progression of Mitral Regurgitation in Asymptomatic Patients With Mitral Valve Prolapse. Am J Cardiol. 2019; 123 (8): 1309–1313. Search in Google Scholar

10. Sénéchal M, Michaud N, Machaalany J, Bernier M, Dubois M, Magne J, Couture C, Mathieu P, Bertrand OF, Voisine P. Relation of mitral valve morphology and motion to mitral regurgitation severity in patients with mitral valve prolapse. Cardiovasc Ultrasound. 2012; 10: 3. Search in Google Scholar

11. Delling FN, Vasan RS. Epidemiology and pathophysiology of mitral valve prolapse: new insights into disease progression, genetics, and molecular basis. Circulation. 2014; 129 (21): 2158–2170. Search in Google Scholar

12. Shah PM. Current concepts in mitral valve prolapse—Diagnosis and management. J Cardiol. 2010; 56 (2): 125–133. Search in Google Scholar

13. Beketova G V, Soldatova O V, Gan R V, Horiacheva IP, Aleksieienko NV, Nekhaienko MI, Zborshchik MV. Daily Profile Of Blood Pressure In Children With Mitral Valve Prolapse. World Med Biol. 2018; 14: 009. Search in Google Scholar

14. Grassi G, Bombelli M, Seravalle G, Dell’Oro R, Quarti-Trevano F. Diurnal blood pressure variation and sympathetic activity. Hypertens Res. 2010; 33 (5): 381–385. Search in Google Scholar

15. Tsao P, von Zastrow M. Downregulation of G protein-coupled receptors. Curr Opin Neurobiol. 2000; 10 (3): 365–369. Search in Google Scholar

16. Pasternac A, Tubau JF, Puddu PE, Król RB, De Champlain J. Increased plasma catecholamine levels in patients with symptomatic mitral valve prolapse. Am J Med. 1982; 73 (6): 783–790. Search in Google Scholar

17. Han H, Ha FJ, Teh AW, Calafiore P, Jones EF, Johns J, Koshy AN, O'Donnell D, Hare DL, Farouque O, Lim HS. Mitral Valve Prolapse and Sudden Cardiac Death: A Systematic Review. J Am Heart Assoc. 2018; 7 (23): e010584. Search in Google Scholar

18. Öztürk C, Schueler R, Weber M, Welz A, Werner N, Nickenig G, Hammerstingl C. Sympathetic Activity in Patients With Secondary Symptomatic Mitral Regurgitation or End-Stage Systolic Heart Failure. JACC Cardiovasc Interv. 2016; 9 (19): 2050–2057. Search in Google Scholar

19. Antoine C, Mantovani F, Benfari G, Mankad S V, Maalouf JF, Michelena HI, Enriquez-Sarano M. Pathophysiology of Degenerative Mitral Regurgitation. Circ Cardiovasc Imaging. 2018; 11 (1): e005971. Search in Google Scholar

20. Monin J-L, Dehant P, Roiron C, Monchi M, Tabet J-Y, Clerc P, Fernandez G, Houel R, Garot J, Chauel C, Gueret P. Functional Assessment of Mitral Regurgitation by Transthoracic Echocardiography Using Standardized Imaging Planes: Diagnostic Accuracy and Outcome Implications. J Am Coll Cardiol. 2005; 46 (2): 302–309. Search in Google Scholar

21. Delling FN, Kang LL, Yeon SB, Kissinger K V, Goddu B, Manning WJ, Han Y. CMR Predictors of Mitral Regurgitation in Mitral Valve Prolapse. JACC Cardiovasc Imaging. 2010; 3 (10): 1037–1045. Search in Google Scholar

22. Shah SN, Oliver TI. Mitral Valve Prolapse. StatPearls. StatPearls Publishing; 2018. Search in Google Scholar

23. Mohty D, Orszulak TA, Schaff H V, Avierinos J-F, Tajik JA, Enriquez-Sarano M. Very Long-Term Survival and Durability of Mitral Valve Repair for Mitral Valve Prolapse. Circulation. 2001; 104 (12 Suppl 1): 1–7. Search in Google Scholar

24. Markham R, Kyranis S, Aroney N, Lau K, Poon K, Scalia G, Walters D. Transcatheter mitral valve intervention: an emerging treatment for mitral regurgitation. Intern Med J. 2018; 48 (4): 382–390. Search in Google Scholar

25. Henry DP, Luft FC, Weinberger MH, Fineberg NS, Grim CE. Norepinephrine in urine and plasma following provocative maneuvers in normal and hypertensive subjects. Hypertension. 1980; 2: 20–28. Search in Google Scholar

26. Grassi G, Bombelli M, Brambilla G, Trevano FQ, Dell'Oro R, Mancia G. Total Cardiovascular Risk, Blood Pressure Variability and Adrenergic Overdrive in Hypertension: Evidence, Mechanisms and Clinical Implications. Curr Hypertens Rep. 2012; 14 (4): 333–338. Search in Google Scholar

27. Stauss HM. Idetification of blood pressure control mechanisms by power spectral analysis. Clin Exp Pharmacol Physiol. 2007; 34 (4): 362–368. Search in Google Scholar

28. Di Rienzo M, Parati G, Radaelli A, Castiglioni P. Baroreflex contribution to blood pressure and heart rate oscillations: time scales, time-variant characteristics and nonlinearities. Philos Trans A Math Phys Eng Sci. 2009; 367 (1892): 1301–1318. Search in Google Scholar

29. Coupé M, Fortrat JO, Larina I, Gaugein-Koch G, Gharib C, Custaud MA. Cardiovascular deconditioning: From autonomic nervous system to microvascular dysfunctions. Respir Physiol Neurobiol. 2009; 169 (Suppl 1): 10–12. Search in Google Scholar

30. Malpas SC. Neural influences on cardiovascular variability: possibilities and pitfalls. Am J Physiol Circ Physiol. 2002; 282 (1): 6–20. Search in Google Scholar

31. Visnovcova Z, Mestanik M, Gala M, Mestanikova A, Tonhajzerova I. The complexity of electrodermal activity is altered in mental cognitive stressors. Comput Biol Med. 2016; 79: 123–129. Search in Google Scholar

32. Stanton N, Hedge A, Brookhuis K, Salas E, Hendrick HW, editors, editors. Handbook of Human Factors and Ergonomics Methods. CRC Press; 2004. 764 pp. Search in Google Scholar

33. Boucsein W. Electrodermal activity. New York: Springer Science+Business Media, LLC; 2012. 618 pp. Search in Google Scholar

34. Yucha C, Montgomery D, Association for Applied Psychophysiology and Biofeedback. Evidence-based practice in biofeedback and neurofeedback. AAPB; 2008. 81 pp. Search in Google Scholar

35. Conroy RM, Pyörälä K, Fitzgerald AP, Sans S, Menotti A, De Bacquer D, Ducimetriére P, Jousilahti P, Keil U, Njølstad I, Oganov RG, Thomsen T, Tunstall-Pedoe H, Tverdal A, Wedel H, Whincup P, Wilhelmsen L, Graham IM. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J. 2003; 24 (11): 987–1003. Search in Google Scholar

eISSN:
1338-4139
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
3 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Medizin, Klinische Medizin, Allgemeinmedizin, Innere Medizin, Kardiologie