Uneingeschränkter Zugang

A Short Review on Feedstock Characteristics in Methane Production from Municipal Solid Waste


Zitieren

Zamri, M. F. M. A., Hasmady, S., Akhiar, A., Ideris, F., Shamsuddin, A.H., Mofijur, M., Rizwanul Fattah, I.M., & Mahlia, T.M.I. (2020). A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste. Renewable and Sustainable Energy Reviews, 137, 1–17. ZamriM. F. M. A. HasmadyS. AkhiarA. IderisF. ShamsuddinA.H. MofijurM. Rizwanul FattahI.M. MahliaT.M.I. 2020 A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste Renewable and Sustainable Energy Reviews 137 1 17 10.1016/j.rser.2020.110637 Search in Google Scholar

Logan, M., & Visvanathan, C. (2019). Management strategies for anaerobic digestate of organic fraction of municipal solid waste: Current status and future prospects. Waste Management and Research, 37(1), 27–39. LoganM. VisvanathanC. 2019 Management strategies for anaerobic digestate of organic fraction of municipal solid waste: Current status and future prospects Waste Management and Research 37 1 27 39 10.1177/0734242X18816793 Search in Google Scholar

Pham, T. P. T., Kaushik, R., Parshetti, G. K., Mahmood, R., & Balasubramanian, R. (2015). Food waste-to-energy conversion technologies: Current status and future directions. Waste Management, 38(1), 399–408. PhamT. P. T. KaushikR. ParshettiG. K. MahmoodR. BalasubramanianR. 2015 Food waste-to-energy conversion technologies: Current status and future directions Waste Management 38 1 399 408 10.1016/j.wasman.2014.12.004 Search in Google Scholar

Breitenmoser, L., Gross, T., Huesch, R., Rau, J., Dhar, H., Kumar, S., Hugi, C., & Wintgens, T. (2019). Anaerobic digestion of biowastes in India: Opportunities, challenges and research needs. Journal of Environmental Management, 236, 396–412. BreitenmoserL. GrossT. HueschR. RauJ. DharH. KumarS. HugiC. WintgensT. 2019 Anaerobic digestion of biowastes in India: Opportunities, challenges and research needs Journal of Environmental Management 236 396 412 10.1016/j.jenvman.2018.12.014 Search in Google Scholar

Ngwabie, N. M., Wirlen, Y. L., Yinda, G. S., & VanderZaag, A. C. (2019). Quantifying greenhouse gas emissions from municipal solid waste dumpsites in Cameroon. Waste Management, 87, 947–953. NgwabieN. M. WirlenY. L. YindaG. S. VanderZaagA. C. 2019 Quantifying greenhouse gas emissions from municipal solid waste dumpsites in Cameroon Waste Management 87 947 953 10.1016/j.wasman.2018.02.048 Search in Google Scholar

Ahluwalia, I. J., & Patel, U. (2018). Solid waste management in India: An assessment of resource recovery and environmental impact. Indian Council for Research on International Economic Relations, 356, 1–48. AhluwaliaI. J. PatelU. 2018 Solid waste management in India: An assessment of resource recovery and environmental impact Indian Council for Research on International Economic Relations 356 1 48 Search in Google Scholar

Sharma, A., Gupta, A. K., & Ganguly, R. (2018). Impact of open dumping of municipal solid waste on soil properties in mountainous region. Journal of Rock Mechanics and Geotechnical Engineering, 10(4), 725–739. SharmaA. GuptaA. K. GangulyR. 2018 Impact of open dumping of municipal solid waste on soil properties in mountainous region Journal of Rock Mechanics and Geotechnical Engineering 10 4 725 739 10.1016/j.jrmge.2017.12.009 Search in Google Scholar

Moya, D., Aldás, C., López, G., & Kaparaju, P. (2017). Municipal solid waste as a valuable renewable energy resource: A worldwide opportunity of energy recovery by using Waste-To-Energy Technologies. Energy Procedia, 134, 286–295. MoyaD. AldásC. LópezG. KaparajuP. 2017 Municipal solid waste as a valuable renewable energy resource: A worldwide opportunity of energy recovery by using Waste-To-Energy Technologies Energy Procedia 134 286 295 10.1016/j.egypro.2017.09.618 Search in Google Scholar

Rawat, M., & Ramanathan, A. (2011). Assessment of Methane Flux from Municipal Solid Waste (MSW) Landfill Areas of Delhi, India. Journal of Environmental Protection, 2(4), 399–407. RawatM. RamanathanA. 2011 Assessment of Methane Flux from Municipal Solid Waste (MSW) Landfill Areas of Delhi, India Journal of Environmental Protection 2 4 399 407 10.4236/jep.2011.24045 Search in Google Scholar

Mor, S., Ravindra, K., De Visscher, A., Dahiya, R. P., & Chandra, A. (2006). Municipal solid waste characterization and its assessment for potential methane generation: A case study. Science of the Total Environment, 371(1–3), 1–10. MorS. RavindraK. De VisscherA. DahiyaR. P. ChandraA. 2006 Municipal solid waste characterization and its assessment for potential methane generation: A case study Science of the Total Environment 371 1–3 1 10 10.1016/j.scitotenv.2006.04.014 Search in Google Scholar

Kumar, S., Smith, S., Fowler, G., Velis, C., Kumar, S.J., Arya, S., Rena, Kumar, R., & Cheeseman, C. (2017). Challenges and opportunities associated with waste management in India. Royal Society Open Science, 4(3), 1–11. KumarS. SmithS. FowlerG. VelisC. KumarS.J. AryaS. Rena KumarR. CheesemanC. 2017 Challenges and opportunities associated with waste management in India Royal Society Open Science 4 3 1 11 10.1098/rsos.160764 Search in Google Scholar

Singh, C. K., Kumar, A., & Roy, S. S. (2018). Quantitative analysis of the methane gas emissions from municipal solid waste in India. Scientific Reports, 8(1), 1–9. SinghC. K. KumarA. RoyS. S. 2018 Quantitative analysis of the methane gas emissions from municipal solid waste in India Scientific Reports 8 1 1 9 10.1038/s41598-018-21326-9 Search in Google Scholar

Themelis, N. J., & Ulloa, P. A. (2006). Methane generation in landfills. Renewable Energy, 32(7), 1243–1257. ThemelisN. J. UlloaP. A. 2006 Methane generation in landfills Renewable Energy 32 7 1243 1257 10.1016/j.renene.2006.04.020 Search in Google Scholar

Pujara, Y., Pathak, P., Sharma, A., & Govani, J. (2019). Review on Indian Municipal Solid Waste Management practices for reduction of environmental impacts to achieve sustainable development goals. Journal of Environmental Management, 248, 1–14. PujaraY. PathakP. SharmaA. GovaniJ. 2019 Review on Indian Municipal Solid Waste Management practices for reduction of environmental impacts to achieve sustainable development goals Journal of Environmental Management 248 1 14 10.1016/j.jenvman.2019.07.009 Search in Google Scholar

Kalyani, K. A., & Pandey, K. K. (2014). Waste to energy status in India: A short review. Renewable and Sustainable Energy Reviews, 31, 113–120. KalyaniK. A. PandeyK. K. 2014 Waste to energy status in India: A short review Renewable and Sustainable Energy Reviews 31 113 120 10.1016/j.rser.2013.11.020 Search in Google Scholar

Singh, R. P., Tyagi, V. V., Allen, T., Ibrahim, M. H., & Kothari, R. (2011). An overview for exploring the possibilities of energy generation from municipal solid waste (MSW) in Indian scenario. Renewable and Sustainable Energy Reviews, 15(9), 4797–4808. SinghR. P. TyagiV. V. AllenT. IbrahimM. H. KothariR. 2011 An overview for exploring the possibilities of energy generation from municipal solid waste (MSW) in Indian scenario Renewable and Sustainable Energy Reviews 15 9 4797 4808 10.1016/j.rser.2011.07.071 Search in Google Scholar

Nixon, J. D., Dey, P. K., Ghosh, S. K., & Davies, P. A. (2013). Evaluation of options for energy recovery from municipal solid waste in India using the hierarchical analytical network process. Energy, 59, 215–223. NixonJ. D. DeyP. K. GhoshS. K. DaviesP. A. 2013 Evaluation of options for energy recovery from municipal solid waste in India using the hierarchical analytical network process Energy 59 215 223 10.1016/j.energy.2013.06.052 Search in Google Scholar

Minde, G., Magdum, S., & Kalyanraman, V. (2013). Biogas as a Sustainable Alternative for Current Energy Need of India. Journal of Sustainable Energy and Environment, 4(3), 121–132. MindeG. MagdumS. KalyanramanV. 2013 Biogas as a Sustainable Alternative for Current Energy Need of India Journal of Sustainable Energy and Environment 4 3 121 132 Search in Google Scholar

Unnikrishnan, S., & Singh, A. (2010). Energy recovery in solid waste management through CDM in India and other countries. Resources, Conservation and Recycling, 54(10), 630–640. UnnikrishnanS. SinghA. 2010 Energy recovery in solid waste management through CDM in India and other countries Resources, Conservation and Recycling 54 10 630 640 10.1016/j.resconrec.2009.11.003 Search in Google Scholar

Rao, P. V., Baral, S. S., Dey, R., & Mutnuri, S. (2010). Biogas generation potential by anaerobic digestion for sustainable energy development in India. Renewable and Sustainable Energy Reviews, 14(7), 2086–2094. RaoP. V. BaralS. S. DeyR. MutnuriS. 2010 Biogas generation potential by anaerobic digestion for sustainable energy development in India Renewable and Sustainable Energy Reviews 14 7 2086 2094 10.1016/j.rser.2010.03.031 Search in Google Scholar

Ossa-Arias, M.D.M., & González-Martínez, S. (2021). Methane Production from the Organic Fraction of Municipal Solid Waste Under Psychrophilic, Mesophilic, and Thermophilic Temperatures at Different Organic Loading Rates. Waste and Biomass Valorization, 1–13. Ossa-AriasM.D.M. González-MartínezS. 2021 Methane Production from the Organic Fraction of Municipal Solid Waste Under Psychrophilic, Mesophilic, and Thermophilic Temperatures at Different Organic Loading Rates Waste and Biomass Valorization 1 13 10.1007/s12649-021-01354-9 Search in Google Scholar

Bajpai, P. (2017). Anaerobic Technology in Pulp and Paper Industry. BajpaiP. 2017 Anaerobic Technology in Pulp and Paper Industry 10.1007/978-981-10-4130-3 Search in Google Scholar

Möller, K., & Müller, T. (2012). Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review. Engineering in Life Sciences, 12(3), 242–257. MöllerK. MüllerT. 2012 Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review Engineering in Life Sciences 12 3 242 257 10.1002/elsc.201100085 Search in Google Scholar

Campuzano, R., & González-Martínez, S. (2020). Start-up of dry semi-continuous OFMSW fermentation for methane production. Biomass and Bioenergy, 136, 1–7. CampuzanoR. González-MartínezS. 2020 Start-up of dry semi-continuous OFMSW fermentation for methane production Biomass and Bioenergy 136 1 7 10.1016/j.biombioe.2020.105544 Search in Google Scholar

Wang, L., Shen, F., Yuan, H., Zou, D., Liu, Y., Zhu, B., & Li, X. (2014). Anaerobic co-digestion of kitchen waste and fruit/vegetable waste: Lab-scale and pilot-scale studies. Waste Management, 34(12), 2627–2633. WangL. ShenF. YuanH. ZouD. LiuY. ZhuB. LiX. 2014 Anaerobic co-digestion of kitchen waste and fruit/vegetable waste: Lab-scale and pilot-scale studies Waste Management 34 12 2627 2633 10.1016/j.wasman.2014.08.005 Search in Google Scholar

J. Guendouz, P. Buffière, J. Cacho, M. Carrère, and J. P. Delgenes, Dry anaerobic digestion in batch mode: Design and operation of a laboratory-scale, completely mixed reactor, Waste Management, 30(10), 1768–1771. GuendouzJ. BuffièreP. CachoJ. CarrèreM. DelgenesJ. P. Dry anaerobic digestion in batch mode: Design and operation of a laboratory-scale, completely mixed reactor Waste Management 30 10 1768 1771 10.1016/j.wasman.2009.12.024 Search in Google Scholar

Mata-Alvarez, J., Macé, S., & Llabrés, P. (2000). Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresource Technology, 74(1), 3–16. Mata-AlvarezJ. MacéS. LlabrésP. 2000 Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives Bioresource Technology 74 1 3 16 10.1016/S0960-8524(00)00023-7 Search in Google Scholar

Dong, L., Zhenhong, Y., & Yongming, S. (2010). Semi-dry mesophilic anaerobic digestion of water sorted organic fraction of municipal solid waste (WSOFMSW). Bioresource Technology, 101(8), 2722–2728. DongL. ZhenhongY. YongmingS. 2010 Semi-dry mesophilic anaerobic digestion of water sorted organic fraction of municipal solid waste (WSOFMSW) Bioresource Technology 101 8 2722 2728 10.1016/j.biortech.2009.12.007 Search in Google Scholar

Basinas, P., Rusín, J., & Chamrádová, K. (2021). Assessment of high-solid mesophilic and thermophilic anaerobic digestion of mechanically-separated municipal solid waste. Environmental Research, 192, 1–14. BasinasP. RusínJ. ChamrádováK. 2021 Assessment of high-solid mesophilic and thermophilic anaerobic digestion of mechanically-separated municipal solid waste Environmental Research 192 1 14 10.1016/j.envres.2020.110202 Search in Google Scholar

Fdez-Güelfo, L. A., Álvarez-Gallego, C., Sales, D., & Romero García, L. I. (2012). Dry-thermophilic anaerobic digestion of organic fraction of municipal solid waste: Methane production modeling. Waste Management, 32(3), 382–388. Fdez-GüelfoL. A. Álvarez-GallegoC. SalesD. Romero GarcíaL. I. 2012 Dry-thermophilic anaerobic digestion of organic fraction of municipal solid waste: Methane production modeling Waste Management 32 3 382 388 10.1016/j.wasman.2011.11.002 Search in Google Scholar

Angelidaki, I., Chen, X., Cui, J., Kaparaju, P., & Ellegaard, L. (2006). Thermophilic anaerobic digestion of source-sorted organic fraction of household municipal solid waste: Start-up procedure for continuously stirred tank reactor. Water Research, 40(14), 2621–2628. AngelidakiI. ChenX. CuiJ. KaparajuP. EllegaardL. 2006 Thermophilic anaerobic digestion of source-sorted organic fraction of household municipal solid waste: Start-up procedure for continuously stirred tank reactor Water Research 40 14 2621 2628 10.1016/j.watres.2006.05.015 Search in Google Scholar

Rajagopal, R., Bellavance, D., & Rahaman, M. S. (2017). Psychrophilic anaerobic digestion of semi-dry mixed municipal food waste: For North American context. Process Safety and Environmental Protection, 105, 101–108. RajagopalR. BellavanceD. RahamanM. S. 2017 Psychrophilic anaerobic digestion of semi-dry mixed municipal food waste: For North American context Process Safety and Environmental Protection 105 101 108 10.1016/j.psep.2016.10.014 Search in Google Scholar

Rocamora, I., Wagland, S. T., Villa, R., Simpson, E. W., Fernández, O., & Bajón-Fernández, Y. (2020). Dry anaerobic digestion of organic waste: A review of operational parameters and their impact on process performance. Bioresource Technology, 299, 1–11. RocamoraI. WaglandS. T. VillaR. SimpsonE. W. FernándezO. Bajón-FernándezY. 2020 Dry anaerobic digestion of organic waste: A review of operational parameters and their impact on process performance Bioresource Technology 299 1 11 10.1016/j.biortech.2019.122681 Search in Google Scholar

Karthikeyan, O. P., & Visvanathan, C. (2013). Bio-energy recovery from high-solid organic substrates by dry anaerobic bio-conversion processes: A review. Reviews in Environmental Science and Biotechnology, 12(3), 257–284. KarthikeyanO. P. VisvanathanC. 2013 Bio-energy recovery from high-solid organic substrates by dry anaerobic bio-conversion processes: A review Reviews in Environmental Science and Biotechnology 12 3 257 284 10.1007/s11157-012-9304-9 Search in Google Scholar

Li, J., Jha, A. K., He, J., Ban, Q., Chang, S., & Wang, P. (2011). Assessment of the effects of dry anaerobic codigestion of cow dung with waste water sludge on biogas yield and biodegradability. International Journal of Physical Sciences, 6(15), 3679–3688. LiJ. JhaA. K. HeJ. BanQ. ChangS. WangP. 2011 Assessment of the effects of dry anaerobic codigestion of cow dung with waste water sludge on biogas yield and biodegradability International Journal of Physical Sciences 6 15 3679 3688 Search in Google Scholar

Debruyn, J., & Hilborn, D. (2007). Anaerobic Digestion Basics. Small, (07), 1–6. DebruynJ. HilbornD. 2007 Anaerobic Digestion Basics Small 07 1 6 Search in Google Scholar

Laiq Ur Rehman, M., Iqbal, A., Chang, C. C., Li, W., & Ju, M. (2019). Anaerobic digestion. Water Environment Research, 91(10), 1253–1271. Laiq Ur RehmanM. IqbalA. ChangC. C. LiW. JuM. 2019 Anaerobic digestion Water Environment Research 91 10 1253 1271 10.1002/wer.1219 Search in Google Scholar

Tyagi, V. K., Fdez-Güelfo, L. A., Zhou, Y., Álvarez-Gallego, C. J., Garcia, L. I. R., & Ng, W. J. (2018). Anaerobic co-digestion of organic fraction of municipal solid waste (OFMSW): Progress and challenges. Renewable and Sustainable Energy Reviews, 93, 380–399. TyagiV. K. Fdez-GüelfoL. A. ZhouY. Álvarez-GallegoC. J. GarciaL. I. R. NgW. J. 2018 Anaerobic co-digestion of organic fraction of municipal solid waste (OFMSW): Progress and challenges Renewable and Sustainable Energy Reviews 93 380 399 10.1016/j.rser.2018.05.051 Search in Google Scholar

Campuzano, R., & González-Martínez, S. (2016). Characteristics of the organic fraction of municipal solid waste and methane production: A review. Waste Management, 54, 3–12. CampuzanoR. González-MartínezS. 2016 Characteristics of the organic fraction of municipal solid waste and methane production: A review Waste Management 54 3 12 10.1016/j.wasman.2016.05.016 Search in Google Scholar

Al Seadi, T., & Lukehurst, C. (2012). Quality management of digestate from biogas plants used as fertiliser. IEA Bioenergy, 1–40. Al SeadiT. LukehurstC. 2012 Quality management of digestate from biogas plants used as fertiliser IEA Bioenergy 1 40 Search in Google Scholar

Paritosh, K., Kushwaha, S. K., Yadav, M., Pareek, N., Chawade, A., & Vivekanand, V. (2017). Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling. BioMed Research International, 1–19. ParitoshK. KushwahaS. K. YadavM. PareekN. ChawadeA. VivekanandV. 2017 Food Waste to Energy: An Overview of Sustainable Approaches for Food Waste Management and Nutrient Recycling BioMed Research International 1 19 10.1155/2017/2370927 Search in Google Scholar

Panigrahi, S., & Dubey, B. K. (2019). A critical review on operating parameters and strategies to improve the biogas yield from anaerobic digestion of organic fraction of municipal solid waste. Renewable Energy, 143, 779–797. PanigrahiS. DubeyB. K. 2019 A critical review on operating parameters and strategies to improve the biogas yield from anaerobic digestion of organic fraction of municipal solid waste Renewable Energy 143 779 797 10.1016/j.renene.2019.05.040 Search in Google Scholar

Schirmer, W. N., Jucá, J. F. T., Schuler, A. R. P., Holanda, S., & Jesus, L. L. (2014). Methane production in anaerobic digestion of organic waste from recife (Brazil) landfill: Evaluation in refuse of diferent ages. Brazilian Journal of Chemical Engineering, 31(2), 373–384. SchirmerW. N. JucáJ. F. T. SchulerA. R. P. HolandaS. JesusL. L. 2014 Methane production in anaerobic digestion of organic waste from recife (Brazil) landfill: Evaluation in refuse of diferent ages Brazilian Journal of Chemical Engineering 31 2 373 384 10.1590/0104-6632.20140312s00002468 Search in Google Scholar

Motte, J.-C., Trably, E., Escudié, R., Hamelin, J., Steyer, J.-P., Bernet, N., Delgenes, J.-P & Dumas, C. (2013). Total solids content: a key parameter of metabolic pathways in dry anaerobic digestion. Biotechnology for Biofuels, 6, 1–9. MotteJ.-C. TrablyE. EscudiéR. HamelinJ. SteyerJ.-P. BernetN. DelgenesJ.-P DumasC. 2013 Total solids content: a key parameter of metabolic pathways in dry anaerobic digestion Biotechnology for Biofuels 6 1 9 10.1186/1754-6834-6-164 Search in Google Scholar

Naik, N., Tkachenko, E., & Wung, R. (2013). The anaerobic digestion of organic municipal solid waste in California. Chemistry, 234, 1–5. NaikN. TkachenkoE. WungR. 2013 The anaerobic digestion of organic municipal solid waste in California Chemistry 234 1 5 Search in Google Scholar

Browne, J. D. & Murphy, J. D. (2013). Assessment of the resource associated with biomethane from food waste. Applied Energy, 104, 170–177. BrowneJ. D. MurphyJ. D. 2013 Assessment of the resource associated with biomethane from food waste Applied Energy 104 170 177 10.1016/j.apenergy.2012.11.017 Search in Google Scholar

Li, Y., Park, S. Y., & Zhu, J. (2011). Solid-state anaerobic digestion for methane production from organic waste. Renewable and Sustainable Energy Reviews, 15(1), 821–826. LiY. ParkS. Y. ZhuJ. 2011 Solid-state anaerobic digestion for methane production from organic waste Renewable and Sustainable Energy Reviews 15 1 821 826 10.1016/j.rser.2010.07.042 Search in Google Scholar

Mao, C., Feng, Y., Wang, X., & Ren, G. (2015). Review on research achievements of biogas from anaerobic digestion. Renewable and Sustainable Energy Reviews, 45, 540–555. MaoC. FengY. WangX. RenG. 2015 Review on research achievements of biogas from anaerobic digestion Renewable and Sustainable Energy Reviews 45 540 555 10.1016/j.rser.2015.02.032 Search in Google Scholar

Wang, S., Hawkins, G. L., Kiepper, B. H., & Das, K. C. (2018). Treatment of slaughterhouse blood waste using pilot scale two-stage anaerobic digesters for biogas production. Renewable Energy, 126, 552–562. WangS. HawkinsG. L. KiepperB. H. DasK. C. 2018 Treatment of slaughterhouse blood waste using pilot scale two-stage anaerobic digesters for biogas production Renewable Energy 126 552 562 10.1016/j.renene.2018.03.076 Search in Google Scholar

Goel, R., Takutomi, T., & Yasui, H. (2003). Anaerobic digestion of excess activated sludge with ozone pre-treatment. Water Science and Technology, 47(12), 207–214. GoelR. TakutomiT. YasuiH. 2003 Anaerobic digestion of excess activated sludge with ozone pre-treatment Water Science and Technology 47 12 207 214 10.2166/wst.2003.0648 Search in Google Scholar

Mishra, P., Thakur, S., Mahapatra, D. M., Wahid, Z. A., Liu, H., & Singh, L. (2018). Impacts of nano-metal oxides on hydrogen production in anaerobic digestion of palm oil mill effluent – A novel approach. International Journal of Hydrogen Energy, 43(5), 2666–2676. MishraP. ThakurS. MahapatraD. M. WahidZ. A. LiuH. SinghL. 2018 Impacts of nano-metal oxides on hydrogen production in anaerobic digestion of palm oil mill effluent – A novel approach International Journal of Hydrogen Energy 43 5 2666 2676 10.1016/j.ijhydene.2017.12.108 Search in Google Scholar

Liu, Z., Si, B., Li, J., He, J., Zhang, C., Lu, Y., Zhang, Y., & Xing, X. (2018). Bioprocess engineering for biohythane production from low-grade waste bio-mass: technical challenges towards scale up. Current Opinion in Biotechnology, 50, 25–31. LiuZ. SiB. LiJ. HeJ. ZhangC. LuY. ZhangY. XingX. 2018 Bioprocess engineering for biohythane production from low-grade waste bio-mass: technical challenges towards scale up Current Opinion in Biotechnology 50 25 31 10.1016/j.copbio.2017.08.014 Search in Google Scholar

Liu, C. M., Wachemo, A.C., Tong, H., Shi, S.H., Zhang, L., Yuan, H.R., & Li, X.J. (2018). Biogas production and microbial community properties during anaerobic digestion of corn stover at different temperatures. Bioresource Technology, 261, 93–103. LiuC. M. WachemoA.C. TongH. ShiS.H. ZhangL. YuanH.R. LiX.J. 2018 Biogas production and microbial community properties during anaerobic digestion of corn stover at different temperatures Bioresource Technology 261 93 103 10.1016/j.biortech.2017.12.076 Search in Google Scholar

Khairuddin, N., Manaf, L. A., Halimoon, N., Ghani, W. A. W. A. K., & Hassan, M. A. (2015). High Solid Anaerobic Co-digestion of Household Organic Waste with Cow Manure. Procedia Environmental Sciences, 30, 174–179. KhairuddinN. ManafL. A. HalimoonN. GhaniW. A. W. A. K. HassanM. A. 2015 High Solid Anaerobic Co-digestion of Household Organic Waste with Cow Manure Procedia Environmental Sciences 30 174 179 10.1016/j.proenv.2015.10.031 Search in Google Scholar

Zahedi, S., Sales, D., García-Morales, J. L., & Solera, R. (2018). Obtaining green energy from dry-thermophilic anaerobic co-digestion of municipal solid waste and biodiesel waste. Biosystems Engineering, 170, 108–116. ZahediS. SalesD. García-MoralesJ. L. SoleraR. 2018 Obtaining green energy from dry-thermophilic anaerobic co-digestion of municipal solid waste and biodiesel waste Biosystems Engineering 170 108 116 10.1016/j.biosystemseng.2018.04.005 Search in Google Scholar

Fernández-Rodríguez, J., Pérez, M., & Romero, L. I. (2013). Comparison of mesophilic and thermophilic dry anaerobic digestion of OFMSW: Kinetic analysis. Chemical Engineering Journal, 232, 59–64. Fernández-RodríguezJ. PérezM. RomeroL. I. 2013 Comparison of mesophilic and thermophilic dry anaerobic digestion of OFMSW: Kinetic analysis Chemical Engineering Journal 232 59 64 10.1016/j.cej.2013.07.066 Search in Google Scholar

Li, C., Li, J., Pan, L., Zhu, X., Xie, S., Yu, G., Wang, Y., Pan, X., Zhu, G., & Angelidaki, I. (2020). Treatment of digestate residues for energy recovery and biochar production: From lab to pilot-scale verification. Journal of Cleaner Production, 265, 1–12. LiC. LiJ. PanL. ZhuX. XieS. YuG. WangY. PanX. ZhuG. AngelidakiI. 2020 Treatment of digestate residues for energy recovery and biochar production: From lab to pilot-scale verification Journal of Cleaner Production 265 1 12 10.1016/j.jclepro.2020.121852 Search in Google Scholar

Zhu, B., Zhang, R., Gikas, P., Rapport, J., Jenkins, B., & Li, X. (2010). Biogas production from municipal solid wastes using an integrated rotary drum and anaerobic-phased solids digester system. Bioresource Technology, 101(16), 6374–6380. ZhuB. ZhangR. GikasP. RapportJ. JenkinsB. LiX. 2010 Biogas production from municipal solid wastes using an integrated rotary drum and anaerobic-phased solids digester system Bioresource Technology 101 16 6374 6380 10.1016/j.biortech.2010.03.075 Search in Google Scholar

Campuzano, R., & González-Martínez, S. (2015). Extraction of soluble substances from organic solid municipal waste to increase methane production. Bioresource Technology, 178, 247–253. CampuzanoR. González-MartínezS. 2015 Extraction of soluble substances from organic solid municipal waste to increase methane production Bioresource Technology 178 247 253 10.1016/j.biortech.2014.08.042 Search in Google Scholar

Melts, I., Normak, A., Nurk, L., & Heinsoo, K. (2014). Chemical characteristics of biomass from nature conservation management for methane production. Bioresource Technology, 167, 226–231. MeltsI. NormakA. NurkL. HeinsooK. 2014 Chemical characteristics of biomass from nature conservation management for methane production Bioresource Technology 167 226 231 10.1016/j.biortech.2014.06.009 Search in Google Scholar

Xu, F., Wang, Z. W., & Li, Y. (2014). Predicting the methane yield of lignocellulosic biomass in mesophilic solid-state anaerobic digestion based on feedstock characteristics and process parameters. Bioresource Technology, 173, 168–176. XuF. WangZ. W. LiY. 2014 Predicting the methane yield of lignocellulosic biomass in mesophilic solid-state anaerobic digestion based on feedstock characteristics and process parameters Bioresource Technology 173 168 176 10.1016/j.biortech.2014.09.090 Search in Google Scholar

Banks, C. J., Chesshire, M., Heaven, S., & Arnold, R. (2011). Anaerobic digestion of source-segregated domestic food waste: Performance assessment by mass and energy balance. Bioresource Technology, 102(2), 612–620. BanksC. J. ChesshireM. HeavenS. ArnoldR. 2011 Anaerobic digestion of source-segregated domestic food waste: Performance assessment by mass and energy balance Bioresource Technology 102 2 612 620 10.1016/j.biortech.2010.08.005 Search in Google Scholar

Marañón, E., Negral, L., Suárez-Peña, B., Fernández-Nava, Y., Ormaechea, P., Díaz-Caneja, P., & Castrillón, L. (2021). Evaluation of the Methane Potential and Kinetics of Supermarket Food Waste. Waste and Biomass Valorization, 12(4), 1829–1843. MarañónE. NegralL. Suárez-PeñaB. Fernández-NavaY. OrmaecheaP. Díaz-CanejaP. CastrillónL. 2021 Evaluation of the Methane Potential and Kinetics of Supermarket Food Waste Waste and Biomass Valorization 12 4 1829 1843 10.1007/s12649-020-01131-0 Search in Google Scholar

Zhang, Y., & Banks, C. J. (2013). Impact of different particle size distributions on anaerobic digestion of the organic fraction of municipal solid waste. Waste Management, 33(2), 297–307. ZhangY. BanksC. J. 2013 Impact of different particle size distributions on anaerobic digestion of the organic fraction of municipal solid waste Waste Management 33 2 297 307 10.1016/j.wasman.2012.09.024 Search in Google Scholar

Zhang, Y., Banks, C. J., & Heaven, S. (2012). Co-digestion of source segregated domestic food waste to improve process stability. Bioresource Technology, 114, 168–178. ZhangY. BanksC. J. HeavenS. 2012 Co-digestion of source segregated domestic food waste to improve process stability Bioresource Technology 114 168 178 10.1016/j.biortech.2012.03.040 Search in Google Scholar

De Vrieze, J., De Lathouwer, L., Verstraete, W., & Boon, N. (2013). High-rate iron-rich activated sludge as stabilizing agent for the anaerobic digestion of kitchen waste. Water Research, 47(11), 3732–3741. De VriezeJ. De LathouwerL. VerstraeteW. BoonN. 2013 High-rate iron-rich activated sludge as stabilizing agent for the anaerobic digestion of kitchen waste Water Research 47 11 3732 3741 10.1016/j.watres.2013.04.020 Search in Google Scholar

Dai, X., Duan, N., Dong, B., & Dai, L. (2013). High-solids anaerobic co-digestion of sewage sludge and food waste in comparison with mono digestions: Stability and performance. Waste Management, 33(2), 308–316. DaiX. DuanN. DongB. DaiL. 2013 High-solids anaerobic co-digestion of sewage sludge and food waste in comparison with mono digestions: Stability and performance Waste Management 33 2 308 316 10.1016/j.wasman.2012.10.018 Search in Google Scholar

Ganesh, R., Torrijos, M., Sousbie, P., Lugardon, A., Steyer, J. P., & Delgenes, J. P. (2014). Single-phase and two-phase anaerobic digestion of fruit and vegetable waste: Comparison of start-up, reactor stability and process performance. Waste Management, 34(5), 875–885. GaneshR. TorrijosM. SousbieP. LugardonA. SteyerJ. P. DelgenesJ. P. 2014 Single-phase and two-phase anaerobic digestion of fruit and vegetable waste: Comparison of start-up, reactor stability and process performance Waste Management 34 5 875 885 10.1016/j.wasman.2014.02.023 Search in Google Scholar

Davidsson, Å., Gruvberger, C., Christensen, T. H., Hansen, T. L., & Jansen, J. la C. (2007). Methane yield in source-sorted organic fraction of municipal solid waste. Waste Management, 27(3), 406–414. DavidssonÅ. GruvbergerC. ChristensenT. H. HansenT. L. JansenJ. la C. 2007 Methane yield in source-sorted organic fraction of municipal solid waste Waste Management 27 3 406 414 10.1016/j.wasman.2006.02.013 Search in Google Scholar

Du, Y. J., Liu, S. Y., & Shen, S. L. (2009). Evaluation of the performance of contaminant mitigation of Chinese standard Municipal Solid Waste landfill liner systems. Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering: The Academia and Practice of Geotechnical Engineering, 1, 929–932. DuY. J. LiuS. Y. ShenS. L. 2009 Evaluation of the performance of contaminant mitigation of Chinese standard Municipal Solid Waste landfill liner systems Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering: The Academia and Practice of Geotechnical Engineering 1 929 932 Search in Google Scholar

Hansen, T. L., Jansen, J. la C., Davidsson, Å., & Christensen, T. H. (2007). Effects of pre-treatment technologies on quantity and quality of source-sorted municipal organic waste for biogas recovery. Waste Management, 27(3), 398–405. HansenT. L. JansenJ. la C. DavidssonÅ. ChristensenT. H. 2007 Effects of pre-treatment technologies on quantity and quality of source-sorted municipal organic waste for biogas recovery Waste Management 27 3 398 405 10.1016/j.wasman.2006.02.014 Search in Google Scholar

Forster-Carneiro, T., Pérez, M., & Romero, L. I. (2008). Influence of total solid and inoculum contents on performance of anaerobic reactors treating food waste. Bioresource Technology, 99(15), 6994–7002. Forster-CarneiroT. PérezM. RomeroL. I. 2008 Influence of total solid and inoculum contents on performance of anaerobic reactors treating food waste Bioresource Technology 99 15 6994 7002 10.1016/j.biortech.2008.01.018 Search in Google Scholar

Hartmann, H., & Ahring, B. K. (2005). Anaerobic digestion of the organic fraction of municipal solid waste: Influence of co-digestion with manure. Water Research, 39(8), 1543–1552. HartmannH. AhringB. K. 2005 Anaerobic digestion of the organic fraction of municipal solid waste: Influence of co-digestion with manure Water Research 39 8 1543 1552 10.4324/9781315793245-100 Search in Google Scholar

Bolzonella, D., Innocenti, L., Pavan, P., Traverso, P., & Cecchi, F. (2003). Semi-dry thermophilic anaerobic digestion of the organic fraction of municipal solid waste: Focusing on the start-up phase. Bioresource Technology, 86(2), 123–129. BolzonellaD. InnocentiL. PavanP. TraversoP. CecchiF. 2003 Semi-dry thermophilic anaerobic digestion of the organic fraction of municipal solid waste: Focusing on the start-up phase Bioresource Technology 86 2 123 129 10.1016/S0960-8524(02)00161-X Search in Google Scholar

Nayono, E. S., Gallert, C., & Winter, J. (2009). Foodwaste as a co-substrate in a fed-batch anaerobic biowaste digester for constant biogas supply. Water Science and Technology, 59(6), 1169–1178. NayonoE. S. GallertC. WinterJ. 2009 Foodwaste as a co-substrate in a fed-batch anaerobic biowaste digester for constant biogas supply Water Science and Technology 59 6 1169 1178 10.2166/wst.2009.102 Search in Google Scholar

Rao, M. S., & Singh, S. P. (2004). Bioenergy conversion studies of organic fraction of MSW: Kinetic studies and gas yield-organic loading relationships for process optimisation. Bioresource Technology, 95(2), 173–185. RaoM. S. SinghS. P. 2004 Bioenergy conversion studies of organic fraction of MSW: Kinetic studies and gas yield-organic loading relationships for process optimisation Bioresource Technology 95 2 173 185 10.1016/j.biortech.2004.02.013 Search in Google Scholar

Alibardi, L., & Cossu, R. (2015). Composition variability of the organic fraction of municipal solid waste and effects on hydrogen and methane production potentials. Waste Management, 36, 147–155. AlibardiL. CossuR. 2015 Composition variability of the organic fraction of municipal solid waste and effects on hydrogen and methane production potentials Waste Management 36 147 155 10.1016/j.wasman.2014.11.019 Search in Google Scholar

Cabbai, V., Ballico, M., Aneggi, E., & Goi, D. (2013). BMP tests of source selected OFMSW to evaluate anaerobic codigestion with sewage sludge. Waste Management, 33(7), 1626–1632. CabbaiV. BallicoM. AneggiE. GoiD. 2013 BMP tests of source selected OFMSW to evaluate anaerobic codigestion with sewage sludge Waste Management 33 7 1626 1632 10.1016/j.wasman.2013.03.020 Search in Google Scholar

Schievano, A., D'Imporzano, G., Malagutti, L., Fragali, E., Ruboni, G., & Adani, F. (2010). Evaluating inhibition conditions in high-solids anaerobic digestion of organic fraction of municipal solid waste. Bioresource Technology, 101(14), 5728–5732. SchievanoA. D'ImporzanoG. MalaguttiL. FragaliE. RuboniG. AdaniF. 2010 Evaluating inhibition conditions in high-solids anaerobic digestion of organic fraction of municipal solid waste Bioresource Technology 101 14 5728 5732 10.1016/j.biortech.2010.02.032 Search in Google Scholar

Bong, C. P. C., Lim, L. Y., Lee, C. T., Klemeš, J. J., Ho, C. S., & Ho, W. S. (2018). The characterisation and treatment of food waste for improvement of biogas production during anaerobic digestion – A review. Journal of Cleaner Production, 172, 1545–1558. BongC. P. C. LimL. Y. LeeC. T. KlemešJ. J. HoC. S. HoW. S. 2018 The characterisation and treatment of food waste for improvement of biogas production during anaerobic digestion – A review Journal of Cleaner Production 172 1545 1558 10.1016/j.jclepro.2017.10.199 Search in Google Scholar

Zhang, R., El-Mashad, H., Hartman, K., Wang, F., Liu, G., Choate, C. & Gamble, P. (2007). Characterization of food waste as feedstock for anaerobic digestion. Bioresource Technology, 98(4), 929–935. ZhangR. El-MashadH. HartmanK. WangF. LiuG. ChoateC. GambleP. 2007 Characterization of food waste as feedstock for anaerobic digestion Bioresource Technology 98 4 929 935 10.1016/j.biortech.2006.02.039 Search in Google Scholar

Fisgativa, H., Tremier, A., & Dabert, P. (2016). Characterizing the variability of food waste quality: A need for efficient valorisation through anaerobic digestion. Waste Management, 50, 264–274. FisgativaH. TremierA. DabertP. 2016 Characterizing the variability of food waste quality: A need for efficient valorisation through anaerobic digestion Waste Management 50 264 274 10.1016/j.wasman.2016.01.041 Search in Google Scholar

Sohoo, I., Ritzkowski, M., Heerenklage, J., & Kuchta, K. (2019). Biochemical methane potential assessment of municipal solid waste generated in Asian cities: A case study of Karachi, Pakistan. Renewable and Sustainable Energy Reviews, 135, 1–12. SohooI. RitzkowskiM. HeerenklageJ. KuchtaK. 2019 Biochemical methane potential assessment of municipal solid waste generated in Asian cities: A case study of Karachi, Pakistan Renewable and Sustainable Energy Reviews 135 1 12 10.1016/j.rser.2020.110175 Search in Google Scholar

Zhai, N., Zhang, T., Yin, D., Yang, G, Wang, X., Ren, G., & Feng, Y. (2015). Effect of initial pH on anaerobic co-digestion of kitchen waste and cow manure. Waste Management, 38(1), 1–6. ZhaiN. ZhangT. YinD. YangG WangX. RenG. FengY. 2015 Effect of initial pH on anaerobic co-digestion of kitchen waste and cow manure Waste Management 38 1 1 6 10.1016/j.wasman.2014.12.027 Search in Google Scholar

Schievano, A., D'Imporzano, G., Malagutti, L., Fragali, E., Ruboni, G., & Adani, F. (2010). Evaluating inhibition conditions in high-solids anaerobic digestion of organic fraction of municipal solid waste. Bioresource Technology, 101(14), 5728–5732. SchievanoA. D'ImporzanoG. MalaguttiL. FragaliE. RuboniG. AdaniF. 2010 Evaluating inhibition conditions in high-solids anaerobic digestion of organic fraction of municipal solid waste Bioresource Technology 101 14 5728 5732 10.1016/j.biortech.2010.02.032 Search in Google Scholar

Ventura, J. R. S., Lee, J., & Jahng, D. (2014). A comparative study on the alternating mesophilic and thermophilic two-stage anaerobic digestion of food waste. Journal of Environmental Sciences (China), 26(6), 1274–1283. VenturaJ. R. S. LeeJ. JahngD. 2014 A comparative study on the alternating mesophilic and thermophilic two-stage anaerobic digestion of food waste Journal of Environmental Sciences (China) 26 6 1274 1283 10.1016/S1001-0742(13)60599-9 Search in Google Scholar

Wang, J., Huang, Y., & Zhao, X. (2004). Performance and characteristics of an anaerobic baffled reactor. Bioresource Technology, 93(2), 205–208. WangJ. HuangY. ZhaoX. 2004 Performance and characteristics of an anaerobic baffled reactor Bioresource Technology 93 2 205 208 10.1016/j.biortech.2003.06.004 Search in Google Scholar

eISSN:
2720-6947
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Architektur und Design, Architektur, Architekten, Gebäude