Uneingeschränkter Zugang

Recent findings of cardiac dysfunction and anti-cancer therapy

,  und   
01. Okt. 2024

Zitieren
COVER HERUNTERLADEN

Araújo F, Gouvinhas C, Fontes F, La Vecchia C, Azevedo A, Lunet N. Trends in cardiovascular diseases and cancer mortality in 45 countries from five continents (1980-2010). Eur J Prev Cardiol. 2014;21(8):1004-17; DOI: 10.1177/2047487313497864. Search in Google Scholar

Liang Z, He Y, Hu X. Cardio-oncology: mechanisms, drug combinations, and reverse cardio-oncology. Int J Mol Sci. 2022: 23(18):10617; DOI: 10.3390/ijms231810617. Search in Google Scholar

Shi S, Lv J, Chai R, Xue W, Xu X, Zhang B, Li Y, Wu H, Song Q, Hu Y. Opportunities and challenges in cardio-oncology: a bibliometric analysis from 2010 to 2022. Curr Probl Cardiol. 2023;48(8):101227; DOI:10.1016/j. cpcardiol.2022.101227. Search in Google Scholar

Kappel C, Rushton M, Johnson C, Aseyev O, Small G, Law A, Ivars J, Dent SF. Clinical experience of patients referred to a multidisciplinary cardio-oncology clinic: an observational cohort study. Curr Oncol. 2019;26(3):e322-7; DOI:10.3747/co.26.4509. Search in Google Scholar

Burashnikov A, Abbate A, Booz GW. Cardiovascular complications of anticancer therapy: a developing storm in medicine. J Cardiovasc Pharmacol. 2022;80(4):491-2; DOI:10.1097/FJC.0000000000001355. Search in Google Scholar

Han X, Zhou Y, Liu W. Precision cardio-oncology: understanding the cardiotoxicity of cancer therapy. NPJ Precis Oncol. 2017;1(1):31; DOI:10.1038/s41698-017-0034-x. Search in Google Scholar

Lenneman CG, Sawyer DB. Cardio-oncology: an update on cardiotoxicity of cancer-related treatment. Circ Res. 2016;118(6):1008-20; DOI:10.1161/CIRCRESAHA.115.303633. Search in Google Scholar

Curigliano G, Cardinale D, Dent S, Criscitiello C, Aseyev O, Lenihan D, Cipolla CM. Cardiotoxicity of anticancer treatments: epidemiology, detection, and management. CA Cancer J Clin. 2016;66(4):309-25; DOI:10.3322/caac.21341. Search in Google Scholar

Manrique CR, Park M, Tiwari N, Plana JC, Garcia MJ. Diagnostic strategies for early recognition of cancer therapeutics–related cardiac dysfunction. Clin Med Insights Cardiol. 2017;11:1179546817697983; DOI:10.1177/1179546817697983. Search in Google Scholar

Ellahham S, Khalouf A, Elkhazendar M, Dababo N, Manla Y. An overview of radiation-induced heart disease. Radiat Oncol J. 2022;40(2):89-102; DOI:10.3857/roj.2021.00766. Search in Google Scholar

Asteggiano R, Aboyans V, Lee G, Salinger S, Richter D. Cardiology care deliverd to cancer patients. Eur Heart J. 2020;41(2):205-6; DOI:10.1093/eurheartj/ehz935. Search in Google Scholar

Bayles CE, Hale DE, Konieczny A, Anderson VD, Richardson CR, Brown KV, Nguyen JT, Hecht J, Schwartz N, Kharel MK, Amissah F, Dowling TC, Nybo SE. Upcycling the anthracyclines: New mechanisms of action, toxicology, and pharmacology. Toxicol Appl Pharmacol. 2023;459:116362; DOI:10.1016/j.taap.2022.116362. Search in Google Scholar

Beretta GL, Zunino F. Molecular mechanisms of anthracycline activity. Top Curr Chem. 2008;283:1-19; DOI:10.1007/128_2007_3. Search in Google Scholar

Volkova M, Raymond Russell I. Anthracycline cardiotoxicity: prevalence, pathogenesis and treatment. Curr Cardiol Rev. 2011;7(4):214-20; DOI:10.2174/157340311799960645. Search in Google Scholar

Mohan N, Jiang J, Dokmanovic M, Wu WJ. Trastuzumab-mediated cardiotoxicity: current understanding, challenges, and frontiers. Antib Ther. 2018;1(1):13-7; DOI:10.1093/abt/tby003. Search in Google Scholar

Boekhout AH, Beijnen JH, Schellens JHM. Trastuzumab. Oncologist. 2011;16(6):800-10; DOI:10.1634/theoncologist.2010-0035. Search in Google Scholar

Vu T, Claret FX. Trastuzumab:updated mechanisms of action and resistance in breast cancer. Front Oncol. 2012;2:62; DOI:10.3389/fonc.2012.00062. Search in Google Scholar

Jawa Z, Perez RM, Garlie L, Singh M, Qamar R, Khandheria BK, Jahangir A, Shi Y. Risk factors of trastuzumab-induced cardiotoxicity in breast cancer: a meta-analysis. 2016;95(44):e5195; DOI:10.1097/MD.0000000000005195. Search in Google Scholar

Nicolazzi MA, Carnicelli A, Fuorlo M, Scaldaferri A, Masetti R, Landolfi R, Favuzzi AMR. Anthracycline and trastuzumab-induced cardiotoxicity in breast cancer. Eur Rev Med Pharmacol Sci. 2018;22(7):2175-85; DOI:10.26355/eurrev_201804_14752. Search in Google Scholar

Zhang N, Yin Y, Xu SJ, Chen WS. 5-Fluorouracil: mechanisms of resistance and reversal strategies. Molecules. 2008;13(8):1551-69; DOI:10.3390/molecules13081551. Search in Google Scholar

Sara JD, Kaur J, Khodadadi R, Rehman M, Lobo R, Chakrabarti S, et al. 5-fluorouracil and cardiotoxicity: a review. Ther Adv Med Oncol. 2018;10:1758835918780140; DOI:10.1177/1758835918780140. Search in Google Scholar

Christine M. Stork, Susan M. Schreffler. Cyclophosphamide. In: Wexler P, editor. Encyclopedia of toxicology, 4th ed. Science Direct: Academic Press; 2024. p. 417-421. Search in Google Scholar

Voelcker G. The real mechanism of action of cyclophosphamide and other oxazaphosphorine cytostatics. Japan J Res. 2020;1(2):1-2; DOI: 10.33425/2690-8077.1007. Search in Google Scholar

Winkelstein A. Mechanisms of immunosuppression: effects of cyclophosphamide on cellular immunity. Blood. 1973;41(2):273-84; DOI:10.1182/blood.V41.2.273.273. Search in Google Scholar

Madondo MT, Quinn M, Plebanski M. Low dose cyclophosphamide: mechanisms of T cell modulation. Cancer Treat Rev. 2016;42:3-9; DOI:10.1016/J.CTRV.2015.11.005. Search in Google Scholar

Kamel SS, Abdelbaky NA, Sayed-Ahmed MM, Karkeet RM, Osman AMM, Fouad MA. Cyclophosphamide-induced cardiotoxicity. Azhar Inter J Pharm Med Sci. 2022;2(2):1-8; DOI:10.21608/AIJPMS.2022.114213.1103. Search in Google Scholar

Rawat PS, Jaiswal A, Khurana A, Bhatti JS, Navik U. Doxorubicin-induced cardiotoxicity: an update on the molecular mechanism and novel therapeutic strategies for effective management. Biomed Pharmacother. 2021;139:111708; DOI:10.1016/j.biopha.2021.111708. Search in Google Scholar

Nabiałek-Trojanowska I, Lewicka E, Wrona A, Kaleta AM, Lewicka-Potocka Z, Raczak G, Dziadziuszko R. Cardiovascular complications after radiotherapy. Cardiol J. 2020;27(6):836-47; DOI:10.5603/CJ.a2018.0120. Search in Google Scholar

Pedersen LN, Schiffer W, Mitchell JD, Bergom C. Radiation-induced cardiac dysfunction: Practical implications. Kardiol Pol. 2022;80(3):256-65; DOI:10.33963/KP.a2022.0066. Search in Google Scholar

Nolan MT, Russell DJ, Marwick TH. Long-term risk of heart failure and myocardial dysfunction after thoracic radiotherapy: a systematic review. Can J Cardiol. 2016;32(7):908-20; DOI:10.1016/j.cjca.2015.12.020. Search in Google Scholar

Młot B, Rzepecki P. Kardiotoksyczność leczenia onkologicznego. Nowotwory J Oncol. 2010;60(6):536-547. Search in Google Scholar

Kucharska W, Negrusz-Kawecka M, Gromkowska M. Cardiotoxicity of oncological treatment in children. Adv Clin Exp Med. 2012;21(3):281-8. Search in Google Scholar

Zou B, Schuster JP, Niu K, Huang Q, Rühle A, Huber PE. Radiotherapy- induced heart disease: a review of the literature. Precis Clin Med. 2019;2(4):270-82; DOI:10.1093/pcmedi/pbz025. Search in Google Scholar

Geiger S, Lange V, Suhl P, Heinemann V, Stemmler HJ. Anticancer therapy induced cardiotoxicity: review of the literature. Anticancer Drugs. 2010;21(6):578-90; DOI:10.1097/CAD.0b013e3283394624. Search in Google Scholar

Minniti G, Goldsmith C, Brada M. Radiotherapy. Handb Clin Neurol. 2012;104:215-28; DOI:10.1016/B978-0-444-52138-5.00016-5. Search in Google Scholar

Gramatyka M. Cardiotoxicity as undesired side effect in the treatment of breast cancer. Postepy Hig Med Dosw. 2014;68:483-97; DOI:10.5604/17322693.1101581. Search in Google Scholar

Kuribayashi K, Finnberg N, Jeffers JR, Zambetti GP, El-Deiry WS. The relative contribution of pro-apoptotic p53-target genes in the triggering of apoptosis following DNA damage in vitro and in vivo. Cell Cycle. 2011;10(14):2380-9; DOI:10.4161/cc.10.14.16588. Search in Google Scholar

Filopei J, Frishman W. Radiation-induced heart disease. Cardiol Rev. 2012;20(4):184-8; DOI:10.1097/CRD.0b013e3182431c23. Search in Google Scholar

Przybyszewski WM, Wideł M, Rzeszowska-Wolny J. Kardiotoksyczne nastepstwa promieniowania jonizujacego i antracyklin. Postepy Hig Med Dosw. 2006;60:397-405. Search in Google Scholar

Merrifield M, Kovalchuk O. Epigenetics in radiation biology: a new research frontier. Front Genet. 2013;4(4):40; DOI:10.3389/fgene.2013.00040. Search in Google Scholar

Shim G, Ricoul M, Hempel WM, Azzam EI, Sabatier L. Crosstalk between telomere maintenance and radiation effects: a key player in the process of radiation-induced carcinogenesis. Mutat Res. 2014;760:1-17; DOI:10.1016/j.mrrev.2014.01.001. Search in Google Scholar

McKenna MJ, Bailey SM. Chromosomal and telomeric biomarkers of normal tissue injury to evaluate risk of degenerative health effects (secondary malignancy, cardiovascular disease) post radiation therapy. Transl Cancer Res. 2017;6(5):789-94; DOI:10.21037/tcr.2017.05.20. Search in Google Scholar

Coluzzi E, Leone S, Sgura A. Oxidative stress induces telomere dysfunction and senescence by replication fork arrest. Cells. 2019;8(1):19; DOI:10.3390/cells8010019. Search in Google Scholar

Luxton JJ, McKenna MJ, Taylor LE, George KA, Zwart SR, Crucian BE, Drel VR, Garrett-Bakelman FE, Mackay MJ, Butler D, Foox J, Grigorev K, Bezdan D, Meydan C, Smith SM, Sharma K, Mason CE, Bailey SM. Temporal telomere and DNA damage responses in the space radiation environment. Cell Rep. 2020;33(10):108435; DOI:10.1016/j.celrep.2020.108435. Search in Google Scholar

M’kacher R, Girinsky T, Colicchio B, Ricoul M, Dieterlen A, Jeandidier E, Heidingsfelder L, Cuceu C, Shim G, Frenzel M, Lenain A, Morat L, Bourhis J, Hempel WM, Koscielny S, Paul JF, Carde P, Sabatier L. Telomere shortening: a new prognostic factor for cardiovascular disease post-radiation exposure. Radiat Prot Dosimetry. 2015;164(1-2):134-7; DOI:10.1093/rpd/ncu296. Search in Google Scholar

Bovelli D, Plataniotis G, Roila F. Cardiotoxicity of chemotherapeutic agents and radiotherapy-related heart disease: ESMO clinical practice guidelines. Ann Oncol. 2010;21(5): v277-82; DOI:10.1093/annonc/mdq200. Search in Google Scholar

López-Sendón J, Álvarez-Ortega C, Zamora Auñon P, Buño Soto A, Lyon AR, Farmakis D, Cardinale D, Canales Albendea M, Feliu Batlle J, Rodríguez Rodríguez I, Rodríguez Fraga O, Albaladejo A, Mediavilla G, González-Juanatey JR, Martínez Monzonis A, Gómez Prieto P, González-Costello J, Serrano, Antolín JM, Cadenas Chamorro R, López Fernández T. Classification, prevalence, and outcomes of anticancer therapy-induced cardiotoxicity: the CARDIOTOX registry. Eur Heart J. 2020;41(18):1720-9; DOI:10.1093/eurheartj/ehaa006. Search in Google Scholar

Dong J, Chen H. Cardiotoxicity of anticancer therapeutics. Front Cardiovasc Med. 2018;5(9); DOI:10.3389/fcvm.2018.00009. Search in Google Scholar

Curigliano G, Cardinale D, Suter T, Plataniotis G, De azambuja E, Sandri MT, Criscitiello C, Goldhirsch A, Cipolla C, Roila F. Cardiovascular toxicity induced by chemotherapy, targeted agents and radiotherapy: ESMO clinical practice guidelines. Ann Oncol. 2012;23(7):vii155-66; DOI:10.1093/annonc/mds293. Search in Google Scholar

Korzeniowska K, Cieślewicz A, Jankowski J, Neumann D, Jabłecka. Powikłania sercowo-naczyniowe leczenia onkologicznego. Farmac Wspol. 2016;9:189-93; Search in Google Scholar

Menna P, Salvatorelli E. Primary prevention strategies for anthracycline cardiotoxicity: a brief overview. Chemotherapy. 2017;62(3):159-68; DOI:10.1159/000455823. Search in Google Scholar

Kong CY, Guo Z, Song P, Zhang X, Yuan YP, Teng T, Yan L, Tang QZ. Underlying the mechanisms of doxorubicin-induced acute cardiotoxicity: oxidative stress and cell death. Int J Biol Sci. 2022;18(2):760-70; DOI:10.7150/ijbs.65258. Search in Google Scholar

Tajiri K, Aonuma K, Sekine I. Cardiovascular toxic effects of targeted cancer therapy. Jap J Clin Oncol. 2017;47(9):779-85; DOI:10.1093/jjco/hyx071. Search in Google Scholar

Zamorano JL, Lancellotti P, Rodriguez Muñoz D, Aboyans V, Asteggiano R, Galderisi M, Habib G, Lenihan DJ, Lip GYH, Lyon AR, Lopez Fernandez T, Mohty D, Piepoli MF, Tamargo J, Torbicki A, Suter TM, ESC Scientific Document Group. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J. 2016;37(36):2768-801; DOI:10.1093/eurheartj/ehw211. Search in Google Scholar

Georgiyeva K, Blake P. Medical sciences – cardiovascular side effects of colon cancer therapy. Sci Eur. 2022;99:20-4; DOI:10.5281/zenodo.7014308. Search in Google Scholar

Bikiewicz A, Banach M, von Haehling S, Maciejewski M, Bielecka-Dabrowa A. Adjuvant breast cancer treatments cardiotoxicity and modern methods of detection and prevention of cardiac complications. ESC Heart Fail. 2021;8(4):2397-418 DOI:10.1002/ehf2.13365. Search in Google Scholar

Alexandre J, Cautela J, Ederhy S, Damaj GL, Salem JE, Barlesi F, Farnault L, Charbonnier A, Mirabel M, Champiat S, Cohen-Solal A, Cohen A, Dolladille C, Thuny F. Cardiovascular toxicity related to cancer treatment: a pragmatic approach to the american and european cardio-oncology guidelines. J Am Heart Assoc. 2020;9(18); DOI:10.1161/JAHA.120.018403. Search in Google Scholar

Thuny F, Alexandre J, Salem JE, Mirabel M, Dolladille C, Cohen-Solal A, Cohen A, Ederhy S, Cautela J. Management of immune checkpoint inhibitor- induced myocarditis: the French Working Group’s Plea for a pragmatic approach. JACC CardioOncol. 2021;3(1):157-61; DOI:10.1016/j. jaccao.2020.12.001. Search in Google Scholar

Ananthan K, Lyon AR. The role of biomarkers in cardio-oncology. J Cardiovasc Transl Res. 2020;13(3):431-50; DOI:10.1007/s12265-020-10042-3. Search in Google Scholar

Beyer AM, Bonini MG, Moslehi J. Cancer therapy-induced cardiovascular toxicity: old/new problems and old drugs. Am J Physiol Heart Circ Physiol. 2019;317:164-7; DOI:10.1152/ajpheart.00277.2019. Search in Google Scholar

Guo J, Fang P, Shi W, Luo P, Huo S, Yan D, Wang M, Peng D, Men L, Li S, Lv J, Lin L. Preexisting cardiovascular risk factors and coronary artery atherosclerosis in patients with and without cancer. Cardiol Res Pract. 2022;2022:4570926; DOI: 10.1155/2022/4570926. Search in Google Scholar

Mamas MA, Matetic A. How common is pre-existing cardiovascular disease in cancer patients: what do we know? Does it matter? JACC Cardio- Oncol. 2022;4(2):254-7; DOI:10.1016/j.jaccao.2022.05.001. Search in Google Scholar

Batra A, Sheka D, Kong S, Cheung WY. Impact of pre-existing cardiovascular disease on treatment patterns and survival outcomes in patients with lung cancer. BMC Cancer. 2020;20(1):1004; DOI:10.1186/s12885-020-07487-9. Search in Google Scholar

Salz T, Zabor EC, Brown P de N, Dalton SO, Raghunathan NJ, Matasar MJ, Steingart R, Vickers AJ, Munksgaard PS, Oeffinger KC, Johanses C. Preexisting cardiovascular risk and subsequent heart failure among non-hodgkin lymphoma survivors. J Clin Oncol. 2017;35(34):3837-43; DOI: 10.1200/JCO.2017.72.4211. Search in Google Scholar

Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Molekularbiologie, Biochemie