Zitieren

Pereira D, Sequeira I. A Scarless Healing tale: comparing homeostasis and wound healing of oral mucosa with skin and oesophagus. Front Cell Dev Biol. 2021;9:682143; DOI:10.3389/fcell.2021.682143. Search in Google Scholar

Rodrigues Neves C, Buskermolen J, Roffel S, Waaijman T, Thon M, Veerman E, Gibbs S. Human saliva stimulates skin and oral wound healing in vitro. J Tissue Eng Regen Med. 2019;13:1079–1092; DOI:10.1002/term.2865. Search in Google Scholar

Waasdorp M, Krom BP, Bikker FJ, Van Zuijlen PPM, Niessen FB, Gibbs S. The bigger picture: why oral mucosa heals better than skin. Biomolecules. 2021;11:1165; DOI:10.3390/biom11081165. Search in Google Scholar

Broughton G, Janis JE, Attinger CE. The basic science of wound healing. Plast Reconstr Surg. 2006;117:12S-34S; DOI:10.1097/01. prs.0000225430.42531.c2. Search in Google Scholar

Velnar T, Bailey T, Smrkolj V. The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res. 2009;37:1528–1542; DOI:10.1177/147323000903700531. Search in Google Scholar

Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound healing: a cellular perspective. Physiol Rev. 2019;99:665–706; DOI:10.1152/physrev.00067.2017. Search in Google Scholar

Periayah MH, Halim AS, Mat Saad AZ. Mechanism action of platelets and crucial blood coagulation pathways in hemostasis. Int J Hematol Oncol Stem Cell Res. 2017;11:319–327. Search in Google Scholar

LaPelusa A, Dave HD. Physiology, hemostasis [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 [cited 2023 Feb 02]. 12 p. Available from: https://www.ncbi.nlm.nih.gov/books/NBK545263/. Search in Google Scholar

Golebiewska EM, Poole AW. Platelet secretion: from haemostasis to wound healing and beyond. Blood Rev. 2015;29:153–162; DOI:10.1016/j. blre.2014.10.003. Search in Google Scholar

de Jesus G, Marques L, Vale N, Mendes RA. The effects of chitosan on the healing process of oral mucosa: an observational cohort feasibility split-mouth study. Nanomaterials (Basel). 2023;13:706; DOI:10.3390/nano13040706. Search in Google Scholar

Pradhan S, Khatlani T, Nairn AC, Vijayan KV. The heterotrimeric G protein Gβ1 interacts with the catalytic subunit of protein phosphatase 1 and modulates G protein-coupled receptor signaling in platelets. J Biol Chem. 2017;292:13133–13142; DOI:10.1074/jbc.M117.796656. Search in Google Scholar

Ruggeri ZM. Platelet adhesion under flow. Microcirculation. 2009;16:58–83; DOI:10.1080/10739680802651477. Search in Google Scholar

McRae S. Physiological haemostasis. In: Fitridge R, Thompson M, editors. Mechanisms of vascular disease: a reference book for vascular specialists [Internet]. Adelaide (AU): University of Adelaide Press; 2011 [cited 2023 Feb 02]. Chapter 9. Available from: https://www.ncbi.nlm.nih.gov/books/NBK534260/. Search in Google Scholar

Chaudhry R, Usama SM, Babiker HM. Physiology, coagulation pathways [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 [cited 2023 Feb 03]. 8 p. Available from: https://www.ncbi.nlm.nih.gov/books/NBK482253/. Search in Google Scholar

Hart J. Inflammation. 1: Its role in the healing of acute wounds. J Wound Care. 2002;11:205–209; DOI:10.12968/jowc.2002.11.6.26411. Search in Google Scholar

Cieutat AM, Lobel P, August JT, Kjeldsen L, Sengeløv H, Borregaard N, Bainton DF. Azurophilic granules of human neutrophilic leukocytes are deficient in lysosome-associated membrane proteins but retain the mannose 6-phosphate recognition marker. Blood. 1998;91:1044–1058. Search in Google Scholar

Vorobjeva NV, Chernyak BV. NETosis: Molecular mechanisms, role in physiology and pathology. Biochemistry (Mosc). 2020;85:1178–1190; DOI:10.1134/S0006297920100065. Search in Google Scholar

Bratton DL, Henson PM. Neutrophil clearance: when the party is over, clean-up begins. Trends Immunol. 2011;32:350–357; DOI:10.1016/j. it.2011.04.009. Search in Google Scholar

Munoz LD, Sweeney MJ, Jameson JM. Skin resident γδ T cell function and regulation in wound repair. Int J Mol Sci. 2020;21:9286; DOI:10.3390/ijms21239286. Search in Google Scholar

Sorg H, Tilkorn DJ, Hager S, Hauser J, Mirastschijski U. Skin wound healing: an update on the current knowledge and concepts. Eur Surg Res. 2017;58:81–94; DOI:10.1159/000454919. Search in Google Scholar

Darby IA, Hewitson TD. Fibroblast differentiation in wound healing and fibrosis. Int Rev Cytol. 2007;257:143–179; DOI:10.1016/S0074-7696(07)57004-X. Search in Google Scholar

Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol. 2002;3:349–363; DOI:10.1038/nrm809. Search in Google Scholar

Tonnesen MG, Feng X, Clark RA. Angiogenesis in wound healing. J Investig Dermatol Symp Proc. 2000;5:40–46; DOI:10.1046/j.1087-0024.2000.00014.x. Search in Google Scholar

Ben Amar M, Wu M. Re-epithelialization: advancing epithelium frontier during wound healing. J R Soc Interface. 2014;11:20131038; DOI:10.1098/rsif.2013.1038. Search in Google Scholar

Pastar I, Stojadinovic O, Yin NC, Ramirez H, Nusbaum AG, Sawaya A, Patel SB, Khalid L, Isseroff RR, Tomic-Canic M. Epithelialization in wound healing: a comprehensive review. Adv Wound Care (New Rochelle). 2014;3:445–464; DOI:10.1089/wound.2013.0473. Search in Google Scholar

Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature. 2008;453:314–321; DOI:10.1038/nature07039. Search in Google Scholar

Guo S, Dipietro LA. Factors affecting wound healing. J Dent Res. 2010;89:219–229; DOI:10.1177/0022034509359125. Search in Google Scholar

Kong X, Fu J, Shao K, Wang L, Lan X, Shi J. Biomimetic hydrogel for rapid and scar-free healing of skin wounds inspired by the healing process of oral mucosa. Acta Biomater. 2019;100:255–269; DOI:10.1016/j. actbio.2019.10.011. Search in Google Scholar

Berckmans RJ, Sturk A, van Tienen LM, Schaap MCL, Nieuwland R. Cell-derived vesicles exposing coagulant tissue factor in saliva. Blood. 2011;117:3172–3180; DOI:10.1182/blood-2010-06-290460. Search in Google Scholar

Iglesias-Bartolome R, Uchiyama A, Molinolo AA, Abusleme L, Brooks SR, Callejas-Valera JL, Edwards D, Doci C, Asselin-Labat M-L, Onaitis MW, Moutsopoulos NM, Gutkind JS, Morasso MI. Transcriptional signature primes human oral mucosa for rapid wound healing. Sci Transl Med. 2018;10:eaap8798; DOI:10.1126/scitranslmed.aap8798. Search in Google Scholar

Li J, Mahiouz DL, Farthing PM, Haskard DO, Thornhill MH. Heterogeneity of ICAM-1 expression, and cytokine regulation of ICAM-1 expression, in skin and oral keratinocytes. J Oral Pathol Med. 1996;25:112–118; DOI:10.1111/j.1600-0714.1996.tb00204.x. Search in Google Scholar

Turabelidze A, Guo S, Chung AY, Chen L, Dai Y, Marucha PT, DiPietro LA. Intrinsic differences between oral and skin keratinocytes. PLoS ONE. 2014;9:e101480; DOI:10.1371/journal.pone.0101480. Search in Google Scholar

Seeger MA, Paller AS. The roles of growth factors in keratinocyte migration. Adv Wound Caref. 2015;4:213–224; DOI:10.1089/wound.2014.0540. Search in Google Scholar

Shannon DB, McKeown STW, Lundy FT, Irwin CR. Phenotypic differences between oral and skin fibroblasts in wound contraction and growth factor expression. Wound Repair Regen. 2006;14:172–178; DOI:10.1111/j.1743-6109.2006.00107.x. Search in Google Scholar

Lygoe KA, Wall I, Stephens P, Lewis MP. Role of vitronectin and fibronectin receptors in oral mucosal and dermal myofibroblast differentiation. Biology of the Cell. 2007;99:601–614; DOI:10.1042/BC20070008. Search in Google Scholar

McKeown STW, Barnes JJ, Hyland PL, Lundy FT, Fray MJ, Irwin CR. Matrix metalloproteinase-3 differences in oral and skin fibroblasts. J Dent Res. 2007;86:457–462; DOI:10.1177/154405910708600513. Search in Google Scholar

Stephens P, Davies KJ, Occleston N, Pleass RD, Kon C, Daniels J, Khaw PT, Thomas DW. Skin and oral fibroblasts exhibit phenotypic differences in extracellular matrix reorganization and matrix metalloproteinase activity. Br J Dermatol. 2001;144:229–237; DOI:10.1046/j.1365-2133.2001.04006.x. Search in Google Scholar

Enoch S, Peake MA, Wall I, Davies L, Farrier J, Giles P, Kipling D, Price P, Moseley R, Thomas D, Stephens P. ‘Young’ oral fibroblasts are geno/phenotypically distinct. J Dent Res. 2010;89:1407–1413; DOI:10.1177/0022034510377796. Search in Google Scholar

Mak K, Manji A, Gallant-Behm C, Wiebe C, Hart DA, Larjava H, Häkkinen L. Scarless healing of oral mucosa is characterized by faster resolution of inflammation and control of myofibroblast action compared to skin wounds in the red Duroc pig model. J Dermatol Sci. 2009;56:168–180; DOI:10.1016/j.jdermsci.2009.09.005. Search in Google Scholar

Jansen RG, Van Kuppevelt TH, Daamen WF, Kuijpers-Jagtman AM, Von Den Hoff JW. Tissue reactions to collagen scaffolds in the oral mucosa and skin of rats: Environmental and mechanical factors. Arch Oral Biol. 2008;53:376–387; DOI:10.1016/j.archoralbio.2007.11.003. Search in Google Scholar

Eming SA, Krieg T, Davidson JM. Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol. 2007;127:514–525; DOI:10.1038/sj.jid.5700701. Search in Google Scholar

Schrementi ME, Ferreira AM, Zender C, DiPietro LA. Site-specific production of TGF-β in oral mucosal and cutaneous wounds. Wound Repair Regen. 2008;16:80–86; DOI:10.1111/j.1524-475X.2007.00320.x. Search in Google Scholar

Szpaderska AM, Walsh CG, Steinberg MJ, DiPietro LA. Distinct patterns of angiogenesis in oral and skin wounds. J Dent Res. 2005;84:309–314; DOI:10.1177/154405910508400403. Search in Google Scholar

van der Veer WM, Niessen FB, Ferreira JA, Zwiers PJ, de Jong EH, Middelkoop E, Molema G. Time course of the angiogenic response during normotrophic and hypertrophic scar formation in humans. Wound Repair Regen. 2011;19:292–301; DOI:10.1111/j.1524-475X.2011.00692.x. Search in Google Scholar

Lei X, Cheng L, Lin H, Pang M, Yao Z, Chen C, Forouzanfar T, Bikker FJ, Wu G, Cheng B. Human salivary histatin-1 is more efficacious in promoting acute skin wound healing than acellular dermal matrix paste. Front Bioeng Biotechnol. 2020;8:999; DOI:10.3389/fbioe.2020.00999. Search in Google Scholar

Ma D, Sun W, Nazmi K, Veerman ECI, Bikker FJ, Jaspers RT, Bolscher JGM, Wu G. Salivary histatin 1 and 2 are targeted to mitochondria and endoplasmic reticulum in human cells. Cells. 2020;9:795; DOI:10.3390/cells9040795. Search in Google Scholar

Brand HS, Ligtenberg AJM, Veerman ECI. Saliva and wound healing. In: Ligtenberg AJM, Veerman ECI, editors. Saliva: secretion and functions 24. Berlin: S. Karger AG; 2014, p. 52–60. Search in Google Scholar

Oudhoff MJ, Bolscher JGM, Nazmi K, Kalay H, Hof W, Amerongen AVN, Veerman ECI. Histatins are the major wound-closure stimulating factors in human saliva as identified in a cell culture assay. FASEB J. 2008;22:3805–3812; DOI:10.1096/fj.08-112003. Search in Google Scholar

Oudhoff MJ, Kroeze KL, Nazmi K, Keijbus PAM, Hof W, Fernandez-Borja M, Hordijk PL, Gibbs S, Bolscher JGM, Veerman ECI. Structure-activity analysis of histatin, a potent wound healing peptide from human saliva: cyclization of histatin potentiates molar activity 1000-fold. FASEB J. 2009;23:3928–3935; DOI:10.1096/fj.09-137588. Search in Google Scholar

Oudhoff MJ, Van Den Keijbus PAM, Kroeze KL, Nazmi K, Gibbs S, Bolscher JGM, Veerman ECI. Histatins Enhance wound closure with oral and non-oral cells. J Dent Res. 2009;88:846–850; DOI:10.1177/0022034509342951. Search in Google Scholar

Krom BP, Oskam J. Microbial biofilms and wound healing: an ecological hypothesis. Phlebology. 2014;29:168–173; DOI:10.1177/0268355514528845. Search in Google Scholar

Abusleme L, Hoare A, Hong B, Diaz PI. Microbial signatures of health, gingivitis, and periodontitis. Periodontol 2000. 2021;86:57–78; DOI:10.1111/prd.12362. Search in Google Scholar

Linehan JL, Harrison OJ, Han S-J, Byrd AL, Vujkovic-Cvijin I, Villarino AV, Sen SK, Shaik J, Smelkinson M, Tamoutounour S, Collins N, Bouladoux N, Dzutsev A, Rosshart SP, Arbuckle JH, Wang C-R, Kristie TM, Rehermann B, Trinchieri G, Brenchley JM, O’Shea JJ, Belkaid Y. Non-classical immunity controls microbiota impact on skin immunity and tissue repair. Cell. 2018;172:784-796.e18; DOI:10.1016/j.cell.2017.12.033. Search in Google Scholar

Belkaid Y, Segre JA. Dialogue between skin microbiota and immunity. Science. 2014;346:954–959; DOI:10.1126/science.1260144. Search in Google Scholar

Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020;30:492–506; DOI:10.1038/s41422-020-0332-7. Search in Google Scholar

Dutzan N, Abusleme L, Bridgeman H, Greenwell-Wild T, Zangerle-Murray T, Fife ME, Bouladoux N, Linley H, Brenchley L, Wemyss K, Calderon G, Hong B-Y, Break TJ, Bowdish DME, Lionakis MS, Jones SA, Trinchieri G, Diaz PI, Belkaid Y, Konkel JE, Moutsopoulos NM. On-going mechanical damage from mastication drives homeostatic Th17 cell responses at the oral barrier. Immunity. 2017;46:133–147; DOI:10.1016/j. immuni.2016.12.010. Search in Google Scholar

Guggenheim B, Gmür R, Galicia JC, Stathopoulou PG, Benakanakere MR, Meier A, Thurnheer T, Kinane DF. In vitro modeling of host-parasite interactions: the “subgingival” biofilm challenge of primary human epithelial cells. BMC Microbiol. 2009;9:280; DOI:10.1186/1471-2180-9-280. Search in Google Scholar

van den Broek LJ, van der Veer WM, de Jong EH, Gibbs S, Niessen FB. Suppressed inflammatory gene expression during human hypertrophic scar compared to normotrophic scar formation. Exp Dermatol. 2015;24:623–629; DOI:10.1111/exd.12739. Search in Google Scholar

Yin L, Chino T, Horst OV, Hacker BM, Clark EA, Dale BA, Chung WO. Differential and coordinated expression of defensins and cytokines by gingival epithelial cells and dendritic cells in response to oral bacteria. BMC Immunol. 2010;11:37; DOI:10.1186/1471-2172-11-37. Search in Google Scholar

Kosten IJ, van de Ven R, Thon M, Gibbs S, de Gruijl TD. Comparative phenotypic and functional analysis of migratory dendritic cell subsets from human oral mucosa and skin. PLoS One. 2017;12:e0180333; DOI:10.1371/journal.pone.0180333. Search in Google Scholar

Szpaderska AM, Zuckerman JD, DiPietro LA. Differential injury responses in oral mucosal and cutaneous wounds. J Dent Res. 2003;82:621–626; DOI:10.1177/154405910308200810. Search in Google Scholar

Kosten IJ, Buskermolen JK, Spiekstra SW, de Gruijl TD, Gibbs S. Gingiva equivalents secrete negligible amounts of key chemokines involved in langerhans cell migration compared to skin equivalents. J Immunol Res. 2015;2015:627125; DOI:10.1155/2015/627125. Search in Google Scholar

Buskermolen JK, Janus MM, Roffel S, Krom BP, Gibbs S. Saliva-derived commensal and pathogenic biofilms in a human gingiva model. J Dent Res. 2018;97:201–208; DOI:10.1177/0022034517729998. Search in Google Scholar

Ridiandries A, Tan JTM, Bursill CA. The role of chemokines in wound healing. Int J Mol Sci. 2018;19:3217; DOI:10.3390/ijms19103217. Search in Google Scholar

Tang D, Kang R, Coyne CB, Zeh HJ, Lotze MT. PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol Rev. 2012;249:158–175; DOI:10.1111/j.1600-065X.2012.01146.x. Search in Google Scholar

Landén NX, Li D, Ståhle M. Transition from inflammation to proliferation: a critical step during wound healing. Cell Mol Life Sci. 2016;73:3861–3885; DOI:10.1007/s00018-016-2268-0. Search in Google Scholar

Butzelaar L, Schooneman DPM, Soykan EA, Talhout W, Ulrich MMW, van den Broek LJ, Gibbs S, Beelen RHJ, Mink van der Molen AB, Niessen FB. Inhibited early immunologic response is associated with hypertrophic scarring. Exp Dermatol. 2016;25:797–804; DOI:10.1111/exd.13100. Search in Google Scholar

Chen L, Arbieva ZH, Guo S, Marucha PT, Mustoe TA, DiPietro LA. Positional differences in the wound transcriptome of skin and oral mucosa. BMC Genomics. 2010;11:471; DOI:10.1186/1471-2164-11-471. Search in Google Scholar

Li J, Farthing PM, Thornhill MH. Oral and skin keratinocytes are stimulated to secrete monocyte chemoattractant protein-1 by tumour necrosis factor-alpha and interferon-gamma. J Oral Pathol Med. 2000;29:438–444; DOI:10.1034/j.1600-0714.2000.290904.x. Search in Google Scholar

de Oliveira S, Reyes-Aldasoro CC, Candel S, Renshaw SA, Mulero V, Calado A. Cxcl8 (IL-8) mediates neutrophil recruitment and behavior in the zebrafish inflammatory response. J Immunol. 2013;190:4349–4359; DOI:10.4049/jimmunol.1203266. Search in Google Scholar

Li J, Ireland GW, Farthing PM, Thornhill MH. Epidermal and oral keratinocytes are induced to produce RANTES and IL-8 by cytokine stimulation. J Invest Dermatol. 1996;106:661–666; DOI:10.1111/1523-1747. ep12345482. Search in Google Scholar

Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili S-A, Mardani F, Seifi B, Mohammadi A, Afshari JT, Sahebkar A. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233:6425–6440; DOI:10.1002/jcp.26429. Search in Google Scholar

Poindexter NJ, Williams RR, Powis G, Jen E, Caudle AS, Chada S, Grimm EA. IL-24 is expressed during wound repair and inhibits TGFalpha-induced migration and proliferation of keratinocytes. Exp Dermatol. 2010;19:714–722; DOI:10.1111/j.1600-0625.2010.01077.x. Search in Google Scholar

Stout AJ, Gresser I, Thompson WD. Inhibition of wound healing in mice by local interferon alpha/beta injection. Int J Exp Pathol. 1993;74:79–85. Search in Google Scholar

DiPietro LA. Angiogenesis and wound repair: when enough is enough. J Leukoc Biol. 2016;100:979–984; DOI:10.1189/jlb.4MR0316-102R. Search in Google Scholar

Chen L, Gajendrareddy PK, DiPietro LA. Differential expression of HIF-1α in skin and mucosal wounds. J Dent Res. 2012;91:871–876; DOI:10.1177/0022034512454435. Search in Google Scholar

Oudhoff MJ, Blaauboer ME, Nazmi K, Scheres N, Bolscher JGM, Veerman ECI. The role of salivary histatin and the human cathelicidin LL-37 in wound healing and innate immunity. Biol Chem. 2010;391:541–548; DOI:10.1515/bc.2010.057. Search in Google Scholar

Dorschner RA, Pestonjamasp VK, Tamakuwala S, Ohtake T, Rudisill J, Nizet V, Agerberth B, Gudmundsson GH, Gallo RL. Cutaneous injury induces the release of cathelicidin anti-microbial peptides active against group a Streptococcus. J Invest Dermatol. 2001;117:91–97; DOI:10.1046/j.1523-1747.2001.01340.x. Search in Google Scholar

Park HJ, Cho DH, Kim HJ, Lee JY, Cho BK, Bang SI, Song SY, Yamasaki K, Di Nardo A, Gallo RL. Collagen synthesis is suppressed in dermal fibro-blasts by the human antimicrobial peptide LL-37. J Invest Dermatol. 2009;129:843–850; DOI:10.1038/jid.2008.320. Search in Google Scholar

Boink MA, Roffel S, Nazmi K, Bolscher JGM, Veerman ECI, Gibbs S. Saliva-derived host defense peptides histatin1 and LL-37 increase secretion of antimicrobial skin and oral mucosa chemokine CCL20 in an IL-1 α -independent manner. J Immunol Res. 2017;2017:1–11; DOI:10.1155/2017/3078194. Search in Google Scholar

Schutyser E, Struyf S, Van Damme J. The CC chemokine CCL20 and its receptor CCR6. Cytokine & Growth Factor Reviews. 2003;14:409–426; DOI:10.1016/S1359-6101(03)00049-2. Search in Google Scholar

Lee AYS, Phan TK, Hulett MD, Körner H. The relationship between CCR6 and its binding partners: Does the CCR6–CCL20 axis have to be extended? Cytokine. 2015;72:97–101; DOI:10.1016/j.cyto.2014.11.029. Search in Google Scholar

Van den Steen PE, Proost P, Wuyts A, Van Damme J, Opdenakker G. Neutrophil gelatinase B potentiates interleukin-8 tenfold by aminoterminal processing, whereas it degrades CTAP-III, PF-4, and GRO-alpha and leaves RANTES and MCP-2 intact. Blood. 2000;96:2673–2681. Search in Google Scholar

Rohani MG, Parks WC. Matrix remodeling by MMPs during wound repair. Matrix Biol. 2015;44–46:113–121; DOI:10.1016/j.matbio.2015.03.002. Search in Google Scholar

Van den Steen PE, Dubois B, Nelissen I, Rudd PM, Dwek RA, Opdenakker G. Biochemistry and molecular biology of gelatinase B or matrix metal-loproteinase-9 (MMP-9). Crit Rev Biochem Mol Biol. 2002;37:375–536; DOI:10.1080/10409230290771546. Search in Google Scholar

Chinnathambi S, Bickenbach JR. Human skin and gingival keratinocytes show differential regulation of matrix metalloproteinases when combined with fibroblasts in 3-dimensional cultures. J Periodontol. 2005;76:1072–1083; DOI:10.1902/jop.2005.76.7.1072. Search in Google Scholar

Glim JE, Everts V, Niessen FB, Ulrich MM, Beelen RHJ. Extracellular matrix components of oral mucosa differ from skin and resemble that of foetal skin. Arch Oral Biol. 2014;59:1048–1055; DOI:10.1016/j. archoralbio.2014.05.019. Search in Google Scholar

Aplin AC, Zhu WH, Fogel E, Nicosia RF. Vascular regression and survival are differentially regulated by MT1-MMP and TIMPs in the aortic ring model of angiogenesis. Am J Physiol Cell Physiol. 2009;297:471-480; DOI:10.1152/ajpcell.00019.2009. Search in Google Scholar

Poznyak A, Grechko AV, Poggio P, Myasoedova VA, Alfieri V, Orekhov AN. The diabetes mellitus-atherosclerosis connection: the role of lipid and glucose metabolism and chronic inflammation. Int J Mol Sci. 2020;21:1835; DOI:10.3390/ijms21051835. Search in Google Scholar

Koï tka A, Abraham P, Bouhanick B, Sigaudo-Roussel D, Demiot C, Saumet JL. Impaired pressure-induced vasodilation at the foot in young adults with type 1 diabetes. Diabetes. 2004;53:721–725; DOI:10.2337/diabetes.53.3.721. Search in Google Scholar

Burgess JL, Wyant WA, Abdo Abujamra B, Kirsner RS, Jozic I. Diabetic Wound-Healing Science. Medicina (Kaunas). 2021;57:1072; DOI:10.3390/medicina57101072. Search in Google Scholar

Deng L, Du C, Song P, Chen T, Rui S, Armstrong DG, Deng W. The role of oxidative stress and antioxidants in diabetic wound healing. Oxid Med Cell Longev. 2021;2021:8852759; DOI:10.1155/2021/8852759. Search in Google Scholar

Mathieu D, Linke J-C, Wattel F. Non-Healing Wounds. In: Mathieu D, editor. Handbook on hyperbaric medicine [Internet]. Berlin/Heidelberg: Springer Dordrecht; 2006 [cited 2023 Feb 03]. p. 401–428. Available from:10.1007/1-4020-4448-8_20. Search in Google Scholar

Woo K, Ayello EA, Sibbald RG. The edge effect: current therapeutic options to advance the wound edge. Adv Skin Wound Care. 2007;20:99–117; quiz 118–119; DOI:10.1097/00129334-200702000-00009. Search in Google Scholar

Huijberts MSP, Schaper NC, Schalkwijk CG. Advanced glycation end products and diabetic foot disease. Diabetes Metab Res Rev. 2008;24 Suppl 1:S19-S24; DOI:10.1002/dmrr.861. Search in Google Scholar

Abiko Y, Selimovic D. The mechanism of protracted wound healing on oral mucosa in diabetes. Review. Bosn J Basic Med Sci. 2010;10:186–191; DOI:10.17305/bjbms.2010.2683. Search in Google Scholar

Karamanos E, Osgood G, Siddiqui A, Rubinfeld I. Wound healing in plastic surgery: does age matter? An American College of Surgeons National Surgical Quality Improvement Program study. Plast Reconstr Surg. 2015;135:876–881; DOI:10.1097/PRS.0000000000000974. Search in Google Scholar

Engeland CG, Bosch JA, Cacioppo JT, Marucha PT. Mucosal wound healing: the roles of age and sex. Arch Surg. 2006;141:1193–1197; discussion 1198; DOI:10.1001/archsurg.141.12.1193. Search in Google Scholar

Bonifant H, Holloway S. A review of the effects of ageing on skin integrity and wound healing. Br J Community Nurs. 2019;24:S28–S33; DOI:10.12968/bjcn.2019.24.Sup3.S28. Search in Google Scholar

Bainbridge P. Wound healing and the role of fibroblasts. J Wound Care. 2013;22:407–408,410–412; DOI:10.12968/jowc.2013.22.8.407. Search in Google Scholar

Engeland CG, Sabzehei B, Marucha PT. Sex hormones and mucosal wound healing. Brain Behav Immun. 2009;23:629–635; DOI:10.1016/j. bbi.2008.12.001. Search in Google Scholar

Ashcroft GS, Greenwell-Wild T, Horan MA, Wahl SM, Ferguson MW. Topical estrogen accelerates cutaneous wound healing in aged humans associated with an altered inflammatory response. Am J Pathol. 1999;155:1137–1146; DOI:10.1016/S0002-9440(10)65217-0. Search in Google Scholar

Ashcroft GS, Dodsworth J, van Boxtel E, Tarnuzzer RW, Horan MA, Schultz GS, Ferguson MW. Estrogen accelerates cutaneous wound healing associated with an increase in TGF-beta1 levels. Nat Med. 1997;3:1209–1215; DOI:10.1038/nm1197-1209. Search in Google Scholar

Radek KA, Ranzer MJ, DiPietro LA. Brewing complications: the effect of acute ethanol exposure on wound healing. J Leukoc Biol. 2009;86:1125–1134; DOI:10.1189/jlb.0209103. Search in Google Scholar

Jung MK, Callaci JJ, Lauing KL, Otis JS, Radek KA, Jones MK, Kovacs EJ. Alcohol exposure and mechanisms of tissue injury and repair. Alcohol Clin Exp. 2011;35:392–399; DOI:10.1111/j.1530-0277.2010.01356.x. Search in Google Scholar

McDaniel JC, Browning KK. Smoking, chronic wound healing, and implications for evidence-based practice. J Wound Ostomy Continence Nurs. 2014;41:415–423; quiz E1-E2; DOI:10.1097/WON.0000000000000057. Search in Google Scholar

Sørensen LT. Wound healing and infection in surgery: the pathophysiological impact of smoking, smoking cessation, and nicotine replacement therapy: a systematic review. Ann Surg. 2012;255:1069–1079; DOI:10.1097/SLA.0b013e31824f632d. Search in Google Scholar

Younis I. Role of oxygen in wound healing. J Wound Care. 2020;29:S4–S10; DOI:10.12968/jowc.2020.29.Sup5b.S4. Search in Google Scholar

Wynn MO. The impact of infection on the four stages of acute wound healing: an overview. Wounds UK. 2021;17:26–32. Search in Google Scholar

Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008;8:726–736; DOI:10.1038/nri2395. Search in Google Scholar

Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, Deans RJ, Keating A, Prockop DJ, Horwitz EM. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–317; DOI:10.1080/14653240600855905. Search in Google Scholar

Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, DenBesten P, Robey PG, Shi S. Stem cell properties of human dental pulp stem cells. J Dent Res. 2002;81:531–535; DOI:10.1177/154405910208100806. Search in Google Scholar

Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–147; DOI:10.1126/science.284.5411.143. Search in Google Scholar

Huang G, Ye S, Zhou X, Liu D, Ying Q-L. Molecular basis of embryonic stem cell self-renewal: from signaling pathways to pluripotency network. Cell Mol Life Sci. 2015;72:1741–1757; DOI:10.1007/s00018-015-1833-2. Search in Google Scholar

Xu X, Chen C, Akiyama K, Chai Y, Le AD, Wang Z, Shi S. Gingivae contain neural-crest- and mesoderm-derived mesenchymal stem cells. J Dent Res. 2013;92:825–832; DOI:10.1177/0022034513497961. Search in Google Scholar

Zhang X, Caetano AJ, Sharpe PT, Volponi AA. Oral stem cells, decoding and mapping the resident cells populations. Biomater Transl. 2022;3:24–30; DOI:10.12336/biomatertransl.2022.01.004. Search in Google Scholar

Boink MA, Van Den Broek LJ, Roffel S, Nazmi K, Bolscher JGM, Gefen A, Veerman ECI, Gibbs S. Different wound healing properties of dermis, adipose, and gingiva mesenchymal stromal cells: different wound healing properties of MSC. Wound Repair Regen. 2016;24:100–109; DOI:10.1111/wrr.12380. Search in Google Scholar

Venkatesh D, Mohan Kumar K, Alur J. Gingival mesenchymal stem cells. J Oral Maxillofac Pathol. 2017;21:296; DOI:10.4103/jomfp. JOMFP_162_17. Search in Google Scholar

Rowlatt U. Intrauterine wound healing in a 20 week human fetus. Virchows Arch A Pathol Anat Histol. 1979;381:353–361; DOI:10.1007/BF00432477. Search in Google Scholar

Colwell AS, Longaker MT, Lorenz HP. Mammalian fetal organ regeneration. Adv Biochem Eng Biotechnol. 2005;93:83-100; DOI:10.1007/b99972. Search in Google Scholar

Karppinen S-M, Heljasvaara R, Gullberg D, Tasanen K, Pihlajaniemi T. Toward understanding scarless skin wound healing and pathological scarring. F1000Res. 2019;8:787; DOI:10.12688/f1000research.18293.1. Search in Google Scholar

Mitrano TI, Grob MS, Carrión F, Nova-Lamperti E, Luz PA, Fierro FS, Quintero A, Chaparro A, Sanz A. Culture and characterization of mesenchymal stem cells from human gingival tissue. J Periodontol. 2010;81:917–925; DOI:10.1902/jop.2010.090566. Search in Google Scholar

Stefańska K, Mehr K, Wieczorkiewicz M, Kulus M, Angelova Volponi A, Shibli JA, Mozdziak P, Skowroński MT, Antosik P, Jaśkowski JM, Piotrowska-Kempisty H, Kempisty B, Dyszkiewicz-Konwińska M. Stemness potency of human gingival cells – application in anticancer therapies and clinical trials. Cells. 2020;9:1916; DOI:10.3390/cells9081916. Search in Google Scholar

Zhang Q, Shi S, Liu Y, Uyanne J, Shi Y, Shi S, Le AD. Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. J Immunol. 2009;183:7787–7798; DOI:10.4049/jimmunol.0902318. Search in Google Scholar

Tomar GB, Srivastava RK, Gupta N, Barhanpurkar AP, Pote ST, Jhaveri HM, Mishra GC, Wani MR. Human gingiva-derived mesenchymal stem cells are superior to bone marrow-derived mesenchymal stem cells for cell therapy in regenerative medicine. Biochem Biophys Res Commun. 2010;393:377–383; DOI:10.1016/j.bbrc.2010.01.126. Search in Google Scholar

Fournier BPJ, Ferre FC, Couty L, Lataillade J-J, Gourven M, Naveau A, Coulomb B, Lafont A, Gogly B. Multipotent progenitor cells in gingival connective tissue. Tissue Eng Part A. 2010;16:2891–2899; DOI:10.1089/ten.tea.2009.0796. Search in Google Scholar

Jin SH, Lee JE, Yun J-H, Kim I, Ko Y, Park JB. Isolation and characterization of human mesenchymal stem cells from gingival connective tissue. J Periodont Res. 2015;50:461–467; DOI:10.1111/jre.12228. Search in Google Scholar

Zhang QZ, Nguyen AL, Yu WH, Le AD. Human oral mucosa and gingiva: a unique reservoir for mesenchymal stem cells. J Dent Res. 2012;91:1011–1018; DOI:10.1177/0022034512461016. Search in Google Scholar

Zhang Q, Nguyen AL, Shi S, Hill C, Wilder-Smith P, Krasieva TB, Le AD. Three-dimensional spheroid culture of human gingiva-derived mesenchymal stem cells enhances mitigation of chemotherapy-induced oral mucositis. Stem Cells Dev. 2012;21:937–947; DOI:10.1089/scd.2011.0252. Search in Google Scholar

Yang H, Gao L-N, An Y, Hu C-H, Jin F, Zhou J, Jin Y, Chen F-M. Comparison of mesenchymal stem cells derived from gingival tissue and periodontal ligament in different incubation conditions. Biomaterials. 2013;34:7033–7047; DOI:10.1016/j.biomaterials.2013.05.025. Search in Google Scholar

Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105:1815–1822; DOI:10.1182/blood-2004-04-1559. Search in Google Scholar

Zhou L-L, Liu W, Wu Y-M, Sun W-L, Dörfer CE, Fawzy El-Sayed KM. Oral mesenchymal stem/progenitor cells: the immunomodulatory masters. Stem Cells Int. 2020;2020:1327405; DOI:10.1155/2020/1327405. Search in Google Scholar

Li W, Ren G, Huang Y, Su J, Han Y, Li J, Chen X, Cao K, Chen Q, Shou P, Zhang L, Yuan Z-R, Roberts AI, Shi S, Le AD, Shi Y. Mesenchymal stem cells: a double-edged sword in regulating immune responses. Cell Death Differ. 2012;19:1505–1513; DOI:10.1038/cdd.2012.26. Search in Google Scholar

DelaRosa O, Lombardo E, Beraza A, Mancheño-Corvo P, Ramirez C, Menta R, Rico L, Camarillo E, Garcï a L, Abad JL, Trigueros C, Delgado M, Büscher D. Requirement of IFN-γ–mediated indoleamine 2,3-dioxygenase expression in the modulation of lymphocyte proliferation by human adipose–derived stem cells. Tissue Eng Part A. 2009;15:2795–2806; DOI: 10.1089/ten.tea.2008.0630. Search in Google Scholar

Ryan JM, Barry F, Murphy JM, Mahon BP. Interferon-γ does not break, but promotes the immunosuppressive capacity of adult human mesenchymal stem cells. Clin Exp Immunol. 2007;149:353–363; DOI:10.1111/j.1365-2249.2007.03422.x. Search in Google Scholar

Krampera M, Cosmi L, Angeli R, Pasini A, Liotta F, Andreini A, Santarlasci V, Mazzinghi B, Pizzolo G, Vinante F, Romagnani P, Maggi E, Romagnani S, Annunziato F. Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells. 2006;24:386–398; DOI:10.1634/stemcells.2005-0008. Search in Google Scholar

Cui L, Yin S, Liu W, Li N, Zhang W, Cao Y. Expanded adipose-derived stem cells suppress mixed lymphocyte reaction by secretion of prostaglandin E2. Tissue Eng. 2007;13:1185–1195; DOI:10.1089/ten.2006.0315. Search in Google Scholar

Jiang CM, Liu J, Zhao JY, Xiao L, An S, Gou YC, Quan HX, Cheng Q, Zhang YL, He W, Wang YT, Yu WJ, Huang YF, Yi YT, Chen Y, Wang J. Effects of hypoxia on the immunomodulatory properties of human gingiva–derived mesenchymal stem cells. J Dent Res. 2015;94:69–77; DOI:10.1177/0022034514557671. Search in Google Scholar

Wada N, Menicanin D, Shi S, Bartold PM, Gronthos S. Immunomodulatory properties of human periodontal ligament stem cells. J Cell Physiol. 2009;219:667–676; DOI:10.1002/jcp.21710. Search in Google Scholar

Davies LC, Lönnies H, Locke M, Sundberg B, Rosendahl K, Götherström C, Le Blanc K, Stephens P. Oral mucosal progenitor cells are potently immunosuppressive in a dose-independent manner. Stem Cells Dev. 2012;21:1478–1487; DOI:10.1089/scd.2011.0434. Search in Google Scholar

eISSN:
2544-3577
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Molekularbiologie, Biochemie