Uneingeschränkter Zugang

Molecular structure of stress granules and their role in the eukaryotic cell


Zitieren

Kedersha N, Anderson P. Mammalian stress granules and processing bodies. Methods Enzymol. 2007;431:61–81; DOI: 10.1016/S0076-6879(07)31005-7.KedershaNAndersonPMammalian stress granules and processing bodiesMethods Enzymol2007431618110.1016/S0076-6879(07)31005-7Open DOISearch in Google Scholar

Mokas S, Mills JR, Garreau C, Fournier MJ, Robert F, Arya P, et al. Uncoupling stress granule assembly and translation initiation inhibition. Mol Biol Cell. 2009;20(11):2673–83; DOI: 10.1091/mbc.E08-10-1061.MokasSMillsJRGarreauCFournierMJRobertFAryaPUncoupling stress granule assembly and translation initiation inhibitionMol Biol Cell2009201126738310.1091/mbc.E08-10-1061Open DOISearch in Google Scholar

Nover L, Scharf KD, Neumann D. Formation of cytoplasmic heat shock granules in tomato cell cultures and leaves. Mol Cell Biol. 1983;3(9):1648–55; DOI: 10.1128/mcb.3.9.1648.NoverLScharfKDNeumannDFormation of cytoplasmic heat shock granules in tomato cell cultures and leavesMol Cell Biol19833916485510.1128/mcb.3.9.1648Open DOISearch in Google Scholar

Arrigo AP, Suhan JP, Welch WJ. Dynamic changes in the structure and intracellular locale of the mammalian low-molecular-weight heat shock protein. Mol Cell Biol. 1988;8(12):5059–71; DOI: 10.1128/mcb.8.12.5059.ArrigoAPSuhanJPWelchWJDynamic changes in the structure and intracellular locale of the mammalian low-molecular-weight heat shock proteinMol Cell Biol198881250597110.1128/mcb.8.12.5059Open DOISearch in Google Scholar

Kedersha NL, Gupta M, Li W, Miller I, Anderson P. RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules. J Cell Biol. 1999;147(7):1431–42;KedershaNLGuptaMLiWMillerIAndersonPRNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granulesJ Cell Biol1999147714314210.1083/jcb.147.7.1431Search in Google Scholar

Donnelly N, Gorman AM, Gupta S, Samali A. The eIF2alpha kinases: their structures and functions. Cell Mol Life Sci. 2013;70(19):3493–511; DOI: 10.1007/s00018-012-1252-6.DonnellyNGormanAMGuptaSSamaliAThe eIF2alpha kinases: their structures and functionsCell Mol Life Sci20137019349351110.1007/s00018-012-1252-6Open DOISearch in Google Scholar

Crosby JS, Chefalo PJ, Yeh I, Ying S, London IM, Leboulch P, et al. Regulation of hemoglobin synthesis and proliferation of differentiating erythroid cells by heme-regulated eIF-2alpha kinase. Blood. 2000;96(9):3241–8;CrosbyJSChefaloPJYehIYingSLondonIMLeboulchPRegulation of hemoglobin synthesis and proliferation of differentiating erythroid cells by heme-regulated eIF-2alpha kinaseBlood20009693241810.1182/blood.V96.9.3241Search in Google Scholar

McEwen E, Kedersha N, Song B, Scheuner D, Gilks N, Han A, et al. Heme-regulated inhibitor kinase-mediated phosphorylation of eukaryotic translation initiation factor 2 inhibits translation, induces stress granule formation, and mediates survival upon arsenite exposure. J Biol Chem. 2005;280(17):16925–33; DOI: 10.1074/jbc.M412882200.McEwenEKedershaNSongBScheunerDGilksNHanAHeme-regulated inhibitor kinase-mediated phosphorylation of eukaryotic translation initiation factor 2 inhibits translation, induces stress granule formation, and mediates survival upon arsenite exposureJ Biol Chem200528017169253310.1074/jbc.M412882200Open DOISearch in Google Scholar

Dong J, Qiu H, Garcia-Barrio M, Anderson J, Hinnebusch AG. Uncharged tRNA activates GCN2 by displacing the protein kinase moiety from a bipartite tRNA-binding domain. Mol Cell. 2000;6(2):269–79; DOI: 10.1016/s1097-2765(00)00028-9.DongJQiuHGarcia-BarrioMAndersonJHinnebuschAGUncharged tRNA activates GCN2 by displacing the protein kinase moiety from a bipartite tRNA-binding domainMol Cell2000622697910.1016/s1097-2765(00)00028-9Open DOISearch in Google Scholar

Emara MM, Fujimura K, Sciaranghella D, Ivanova V, Ivanov P, Anderson P. Hydrogen peroxide induces stress granule formation independent of eIF2alpha phosphorylation. Biochem Biophys Res Commun. 2012;423(4):763–9; DOI: 10.1016/j.bbrc.2012.06.033.EmaraMMFujimuraKSciaranghellaDIvanovaVIvanovPAndersonPHydrogen peroxide induces stress granule formation independent of eIF2alpha phosphorylationBiochem Biophys Res Commun20124234763910.1016/j.bbrc.2012.06.033339903122705549Open DOISearch in Google Scholar

Szaflarski W, Fay MM, Kedersha N, Zabel M, Anderson P, Ivanov P. Vinca alkaloid drugs promote stress-induced translational repression and stress granule formation. Oncotarget. 2016;7(21):30307–22; DOI: 10.18632/oncotarget.8728.SzaflarskiWFayMMKedershaNZabelMAndersonPIvanovPVinca alkaloid drugs promote stress-induced translational repression and stress granule formationOncotarget2016721303072210.18632/oncotarget.8728505868227083003Open DOISearch in Google Scholar

Arimoto-Matsuzaki K, Saito H, Takekawa M. TIA1 oxidation inhibits stress granule assembly and sensitizes cells to stress-induced apoptosis. Nat Commun. 2016;7:10252; DOI: 10.1038/ncomms10252.Arimoto-MatsuzakiKSaitoHTakekawaMTIA1 oxidation inhibits stress granule assembly and sensitizes cells to stress-induced apoptosisNat Commun201671025210.1038/ncomms10252472983226738979Open DOISearch in Google Scholar

Aulas A, Lyons SM, Fay MM, Anderson P, Ivanov P. Nitric oxide triggers the assembly of “type II” stress granules linked to decreased cell viability. Cell Death Dis. 2018;9(11):1129; DOI: 10.1038/s41419-018-1173-x.AulasALyonsSMFayMMAndersonPIvanovPNitric oxide triggers the assembly of “type II” stress granules linked to decreased cell viabilityCell Death Dis2018911112910.1038/s41419-018-1173-x623421530425239Open DOISearch in Google Scholar

Ivanov P, Kedersha N, Anderson P. Stress Granules and Processing Bodies in Translational Control. Cold Spring Harb Perspect Biol. 2018; DOI: 10.1101/cshperspect.a032813.IvanovPKedershaNAndersonPStress Granules and Processing Bodies in Translational ControlCold Spring Harb Perspect Biol201810.1101/cshperspect.a032813649634730082464Open DOISearch in Google Scholar

Nunes C, Mestre I, Marcelo A, Koppenol R, Matos CA, Nobrega C. MSGP: the first database of the protein components of the mammalian stress granules. Database (Oxford). 2019;2019; DOI: 10.1093/database/baz031.NunesCMestreIMarceloAKoppenolRMatosCANobregaCMSGP: the first database of the protein components of the mammalian stress granulesDatabase (Oxford)20192019;10.1093/database/baz031639579530820574Open DOISearch in Google Scholar

Protter DS, Parker R. Principles and Properties of Stress Granules. Trends Cell Biol. 2016; DOI: 10.1016/j.tcb.2016.05.004.ProtterDSParkerRPrinciples and Properties of Stress GranulesTrends Cell Biol201610.1016/j.tcb.2016.05.004499364527289443Open DOISearch in Google Scholar

Kedersha N, Panas MD, Achorn CA, Lyons S, Tisdale S, Hickman T, et al. G3BP-Caprin1-USP10 complexes mediate stress granule condensation and associate with 40S subunits. J Cell Biol. 2016;212(7):845–60; DOI: 10.1083/jcb.201508028.KedershaNPanasMDAchornCALyonsSTisdaleSHickmanTG3BP-Caprin1-USP10 complexes mediate stress granule condensation and associate with 40S subunitsJ Cell Biol201621278456010.1083/jcb.201508028481030227022092Open DOISearch in Google Scholar

Sanders DW, Kedersha N, Lee DSW, Strom AR, Drake V, Riback JA, et al. Competing Protein-RNA Interaction Networks Control Multiphase Intracellular Organization. Cell. 2020;181(2):306–24 e28; DOI: 10.1016/j.cell.2020.03.050.SandersDWKedershaNLeeDSWStromARDrakeVRibackJACompeting Protein-RNA Interaction Networks Control Multiphase Intracellular OrganizationCell2020181230624 e2810.1016/j.cell.2020.03.050781627832302570Open DOISearch in Google Scholar

Siang DTC, Lim YC, Kyaw AMM, Win KN, Chia SY, Degirmenci U, et al. The RNA-binding protein HuR is a negative regulator in adipogenesis. Nat Commun. 2020;11(1):213; DOI: 10.1038/s41467-019-14001-8.SiangDTCLimYCKyawAMMWinKNChiaSYDegirmenciUThe RNA-binding protein HuR is a negative regulator in adipogenesisNat Commun202011121310.1038/s41467-019-14001-8695411231924774Open DOISearch in Google Scholar

Akins MR, Berk-Rauch HE, Kwan KY, Mitchell ME, Shepard KA, Korsak LI, et al. Axonal ribosomes and mRNAs associate with fragile X granules in adult rodent and human brains. Hum Mol Genet. 2017;26(1):192–209; DOI: 10.1093/hmg/ddw381.AkinsMRBerk-RauchHEKwanKYMitchellMEShepardKAKorsakLIAxonal ribosomes and mRNAs associate with fragile X granules in adult rodent and human brainsHum Mol Genet201726119220910.1093/hmg/ddw381581565628082376Open DOISearch in Google Scholar

Kim TH, Tsang B, Vernon RM, Sonenberg N, Kay LE, Forman-Kay JD. Phospho-dependent phase separation of FMRP and CAPRIN1 recapitulates regulation of translation and deadenylation. Science. 2019;365(6455):825–9; DOI: 10.1126/science.aax4240.KimTHTsangBVernonRMSonenbergNKayLEForman-KayJDPhospho-dependent phase separation of FMRP and CAPRIN1 recapitulates regulation of translation and deadenylationScience20193656455825910.1126/science.aax424031439799Open DOISearch in Google Scholar

Lai A, Valdez-Sinon AN, Bassell GJ. Regulation of RNA granules by FMRP and implications for neurological diseases. Traffic. 2020;21(7):454–62; DOI: 10.1111/tra.12733.LaiAValdez-SinonANBassellGJRegulation of RNA granules by FMRP and implications for neurological diseasesTraffic20202174546210.1111/tra.12733737726932374065Open DOISearch in Google Scholar

Kedersha N, Ivanov P, Anderson P. Stress granules and cell signaling: more than just a passing phase? Trends Biochem Sci. 2013;38(10):494–506; DOI: 10.1016/j.tibs.2013.07.004.KedershaNIvanovPAndersonPStress granules and cell signaling: more than just a passing phase?Trends Biochem Sci2013381049450610.1016/j.tibs.2013.07.004383294924029419Open DOISearch in Google Scholar

Lloyd RE. Regulation of stress granules and P-bodies during RNA virus infection. Wiley Interdiscip Rev RNA. 2013;4(3):317–31; DOI: 10.1002/wrna.1162.LloydRERegulation of stress granules and P-bodies during RNA virus infectionWiley Interdiscip Rev RNA2013433173110.1002/wrna.1162365266123554219Open DOISearch in Google Scholar

Wehner KA, Schutz S, Sarnow P. OGFOD1, a novel modulator of eukaryotic translation initiation factor 2alpha phosphorylation and the cellular response to stress. Mol Cell Biol. 2010;30(8):2006–16; DOI: 10.1128/MCB.01350-09.WehnerKASchutzSSarnowPOGFOD1, a novel modulator of eukaryotic translation initiation factor 2alpha phosphorylation and the cellular response to stressMol Cell Biol201030820061610.1128/MCB.01350-09284947420154146Open DOISearch in Google Scholar

Arimoto K, Fukuda H, Imajoh-Ohmi S, Saito H, Takekawa M. Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways. Nat Cell Biol. 2008;10(11):1324–32; DOI: 10.1038/ncb1791.ArimotoKFukudaHImajoh-OhmiSSaitoHTakekawaMFormation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathwaysNat Cell Biol2008101113243210.1038/ncb179118836437Open DOISearch in Google Scholar

Qiu Y, Mao T, Zhang Y, Shao M, You J, Ding Q, et al. A crucial role for RACK1 in the regulation of glucose-stimulated IRE1alpha activation in pancreatic beta cells. Sci Signal. 2010;3(106):ra7; DOI: 10.1126/scisignal.2000514.QiuYMaoTZhangYShaoMYouJDingQA crucial role for RACK1 in the regulation of glucose-stimulated IRE1alpha activation in pancreatic beta cellsSci Signal.20103106ra710.1126/scisignal.2000514294071420103773Open DOISearch in Google Scholar

Efeyan A, Zoncu R, Sabatini DM. Amino acids and mTORC1: from lysosomes to disease. Trends Mol Med. 2012;18(9):524–33; DOI: 10.1016/j.molmed.2012.05.007.EfeyanAZoncuRSabatiniDMAmino acids and mTORC1: from lysosomes to diseaseTrends Mol Med20121895243310.1016/j.molmed.2012.05.007343265122749019Open DOISearch in Google Scholar

Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E, et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell. 2007;25(6):903–15; DOI: 10.1016/j.molcel.2007.03.003.SancakYThoreenCCPetersonTRLindquistRAKangSASpoonerEPRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinaseMol Cell20072569031510.1016/j.molcel.2007.03.00317386266Open DOISearch in Google Scholar

Takahara T, Maeda T. Transient sequestration of TORC1 into stress granules during heat stress. Mol Cell. 2012;47(2):242–52; DOI: 10.1016/j.molcel.2012.05.019.TakaharaTMaedaTTransient sequestration of TORC1 into stress granules during heat stressMol Cell20124722425210.1016/j.molcel.2012.05.01922727621Open DOISearch in Google Scholar

Chi X, Wang S, Huang Y, Stamnes M, Chen JL. Roles of rho GTPases in intracellular transport and cellular transformation. Int J Mol Sci. 2013;14(4):7089–108; DOI: 10.3390/ijms14047089.ChiXWangSHuangYStamnesMChenJLRoles of rho GTPases in intracellular transport and cellular transformationInt J Mol Sci2013144708910810.3390/ijms14047089364567823538840Open DOISearch in Google Scholar

Ongusaha PP, Qi HH, Raj L, Kim YB, Aaronson SA, Davis RJ, et al. Identification of ROCK1 as an upstream activator of the JIP-3 to JNK signaling axis in response to UVB damage. Sci Signal. 2008;1(47):ra14; DOI: 10.1126/scisignal.1161938.OngusahaPPQiHHRajLKimYBAaronsonSADavisRJIdentification of ROCK1 as an upstream activator of the JIP-3 to JNK signaling axis in response to UVB damageSci Signal2008147ra1410.1126/scisignal.1161938264972519036714Open DOISearch in Google Scholar

Sahoo PK, Murawala P, Sawale PT, Sahoo MR, Tripathi MM, Gaikwad SR, et al. Wnt signalling antagonizes stress granule assembly through a Dishevelled-dependent mechanism. Biol Open. 2012;1(2):109–19; DOI: 10.1242/bio.2011023.SahooPKMurawalaPSawalePTSahooMRTripathiMMGaikwadSRWnt signalling antagonizes stress granule assembly through a Dishevelled-dependent mechanismBiol Open2012121091910.1242/bio.2011023350720423213403Open DOISearch in Google Scholar

Mahboubi H, Stochaj U. Cytoplasmic Stress Granules: Dynamic Modulators of Cell Signaling and Disease. Biochim Biophys Acta. 2017; DOI: 10.1016/j.bbadis.2016.12.022.MahboubiHStochajUCytoplasmic Stress Granules: Dynamic Modulators of Cell Signaling and DiseaseBiochim Biophys Acta201710.1016/j.bbadis.2016.12.02228095315Open DOISearch in Google Scholar

Zhan Y, Wang H, Ning Y, Zheng H, Liu S, Yang Y, et al. Understanding the roles of stress granule during chemotherapy for patients with malignant tumors. Am J Cancer Res. 2020;10(8):2226–41;ZhanYWangHNingYZhengHLiuSYangYUnderstanding the roles of stress granule during chemotherapy for patients with malignant tumorsAm J Cancer Res2020108222641Search in Google Scholar

Shaw RJ, Cantley LC. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature. 2006;441(7092):424–30; DOI: 10.1038/nature04869.ShawRJCantleyLCRas, PI(3)K and mTOR signalling controls tumour cell growthNature200644170924243010.1038/nature0486916724053Open DOISearch in Google Scholar

Bittencourt LFF, Negreiros-Lima GL, Sousa LP, Silva AG, Souza IBS, Ribeiro R, et al. G3BP1 knockdown sensitizes U87 glioblastoma cell line to Bortezomib by inhibiting stress granules assembly and potentializing apoptosis. J Neurooncol. 2019;144(3):463–73; DOI: 10.1007/s11060-019-03252-6.BittencourtLFFNegreiros-LimaGLSousaLPSilvaAGSouzaIBSRibeiroRG3BP1 knockdown sensitizes U87 glioblastoma cell line to Bortezomib by inhibiting stress granules assembly and potentializing apoptosisJ Neurooncol201914434637310.1007/s11060-019-03252-631392596Open DOISearch in Google Scholar

Somasekharan SP, El-Naggar A, Leprivier G, Cheng H, Hajee S, Grunewald TG, et al. YB-1 regulates stress granule formation and tumor progression by translationally activating G3BP1. J Cell Biol. 2015;208(7):913–29; DOI: 10.1083/jcb.201411047.SomasekharanSPEl-NaggarALeprivierGChengHHajeeSGrunewaldTGYB-1 regulates stress granule formation and tumor progression by translationally activating G3BP1J Cell Biol201520879132910.1083/jcb.201411047438473425800057Open DOISearch in Google Scholar

Takahashi M, Higuchi M, Matsuki H, Yoshita M, Ohsawa T, Oie M, et al. Stress granules inhibit apoptosis by reducing reactive oxygen species production. Mol Cell Biol. 2013;33(4):815–29; DOI: 10.1128/MCB.00763-12.TakahashiMHiguchiMMatsukiHYoshitaMOhsawaTOieMStress granules inhibit apoptosis by reducing reactive oxygen species productionMol Cell Biol20133348152910.1128/MCB.00763-12357134623230274Open DOISearch in Google Scholar

Adjibade P, Simoneau B, Ledoux N, Gauthier WN, Nkurunziza M, Khandjian EW, et al. Treatment of cancer cells with Lapatinib negatively regulates general translation and induces stress granules formation. PLoS One. 2020;15(5):e0231894; DOI: 10.1371/journal.pone.0231894.AdjibadePSimoneauBLedouxNGauthierWNNkurunzizaMKhandjianEWTreatment of cancer cells with Lapatinib negatively regulates general translation and induces stress granules formationPLoS One2020155e023189410.1371/journal.pone.0231894719777532365111Open DOISearch in Google Scholar

Ackerman D, Simon MC. Hypoxia, lipids, and cancer: surviving the harsh tumor microenvironment. Trends Cell Biol. 2014;24(8):472–8; DOI: 10.1016/j.tcb.2014.06.001.AckermanDSimonMCHypoxia, lipids, and cancer: surviving the harsh tumor microenvironmentTrends Cell Biol2014248472810.1016/j.tcb.2014.06.001411215324985940Open DOISearch in Google Scholar

Sim E, Irollo E, Grabocka E. Evaluating Stress Granules in Pancreatic Cancer In Vitro and In Vivo. Methods Mol Biol. 2019;1882:183–95; DOI: 10.1007/978-1-4939-8879-2_17.SimEIrolloEGrabockaEEvaluating Stress Granules in Pancreatic Cancer In Vitro and In VivoMethods Mol Biol201918821839510.1007/978-1-4939-8879-2_1730378055Open DOISearch in Google Scholar

Adjibade P, St-Sauveur VG, Quevillon Huberdeau M, Fournier MJ, Savard A, Coudert L, et al. Sorafenib, a multikinase inhibitor, induces formation of stress granules in hepatocarcinoma cells. Oncotarget. 2015;6(41):43927–43; DOI: 10.18632/oncotarget.5980.AdjibadePSt-SauveurVGQuevillon HuberdeauMFournierMJSavardACoudertLSorafenib, a multikinase inhibitor, induces formation of stress granules in hepatocarcinoma cellsOncotarget2015641439274310.18632/oncotarget.5980479127726556863Open DOISearch in Google Scholar

Vilas-Boas Fde A, da Silva AM, de Sousa LP, Lima KM, Vago JP, Bittencourt LF, et al. Impairment of stress granule assembly via inhibition of the eIF2alpha phosphorylation sensitizes glioma cells to chemotherapeutic agents. J Neurooncol. 2016;127(2):253–60; DOI: 10.1007/s11060-015-2043-3.Vilas-Boas FdeAda SilvaAMde SousaLPLimaKMVagoJPBittencourtLFImpairment of stress granule assembly via inhibition of the eIF2alpha phosphorylation sensitizes glioma cells to chemotherapeutic agentsJ Neurooncol201612722536010.1007/s11060-015-2043-326732083Open DOISearch in Google Scholar

Zhao J, Fu X, Chen H, Min L, Sun J, Yin J, et al. G3BP1 interacts with YWHAZ to regulate chemoresistance and predict adjuvant chemotherapy benefit in gastric cancer. Br J Cancer. 2021;124(2):425–36; DOI: 10.1038/s41416-020-01067-1.ZhaoJFuXChenHMinLSunJYinJG3BP1 interacts with YWHAZ to regulate chemoresistance and predict adjuvant chemotherapy benefit in gastric cancerBr J Cancer202112424253610.1038/s41416-020-01067-1785286832989225Open DOISearch in Google Scholar

Legrand N, Dixon DA, Sobolewski C. Stress granules in colorectal cancer: Current knowledge and potential therapeutic applications. World J Gastroenterol. 2020;26(35):5223–47; DOI: 10.3748/wjg.v26.i35.5223.LegrandNDixonDASobolewskiCStress granules in colorectal cancer: Current knowledge and potential therapeutic applicationsWorld J Gastroenterol2020263552234710.3748/wjg.v26.i35.5223750424432994684Open DOISearch in Google Scholar

Wolozin B, Ivanov P. Stress granules and neurodegeneration. Nat Rev Neurosci. 2019;20(11):649–66; DOI: 10.1038/s41583-019-0222-5.WolozinBIvanovPStress granules and neurodegenerationNat Rev Neurosci201920116496610.1038/s41583-019-0222-5698631531582840Open DOISearch in Google Scholar

Bentmann E, Haass C, Dormann D. Stress granules in neurodegeneration--lessons learnt from TAR DNA binding protein of 43 kDa and fused in sarcoma. FEBS J. 2013;280(18):4348–70; DOI: 10.1111/febs.12287.BentmannEHaassCDormannDStress granules in neurodegeneration--lessons learnt from TAR DNA binding protein of 43 kDa and fused in sarcomaFEBS J20132801843487010.1111/febs.1228723587065Open DOISearch in Google Scholar

Ayala YM, Pantano S, D’Ambrogio A, Buratti E, Brindisi A, Marchetti C, et al. Human, Drosophila, and C.elegans TDP43: nucleic acid binding properties and splicing regulatory function. J Mol Biol. 2005;348(3):575–88; DOI: 10.1016/j.jmb.2005.02.038.AyalaYMPantanoSD’AmbrogioABurattiEBrindisiAMarchettiCHuman, Drosophila, and C.elegans TDP43: nucleic acid binding properties and splicing regulatory functionJ Mol Biol200534835758810.1016/j.jmb.2005.02.03815826655Open DOISearch in Google Scholar

Buratti E, Baralle FE. The multiple roles of TDP-43 in pre-mRNA processing and gene expression regulation. RNA Biol. 2010;7(4):420–9; DOI: 10.4161/rna.7.4.12205.BurattiEBaralleFEThe multiple roles of TDP-43 in pre-mRNA processing and gene expression regulationRNA Biol201074420910.4161/rna.7.4.1220520639693Open DOISearch in Google Scholar

Colombrita C, Zennaro E, Fallini C, Weber M, Sommacal A, Buratti E, et al. TDP-43 is recruited to stress granules in conditions of oxidative insult. J Neurochem. 2009;111(4):1051–61; DOI: 10.1111/j.1471-4159.2009.06383.x.ColombritaCZennaroEFalliniCWeberMSommacalABurattiETDP-43 is recruited to stress granules in conditions of oxidative insultJ Neurochem2009111410516110.1111/j.1471-4159.2009.06383.x19765185Open DOISearch in Google Scholar

McDonald KK, Aulas A, Destroismaisons L, Pickles S, Beleac E, Camu W, et al. TAR DNA-binding protein 43 (TDP-43) regulates stress granule dynamics via differential regulation of G3BP and TIA-1. Hum Mol Genet. 2011;20(7):1400–10; DOI: 10.1093/hmg/ddr021.McDonaldKKAulasADestroismaisonsLPicklesSBeleacECamuWTAR DNA-binding protein 43 (TDP-43) regulates stress granule dynamics via differential regulation of G3BP and TIA-1Hum Mol Genet201120714001010.1093/hmg/ddr02121257637Open DOISearch in Google Scholar

Aulas A, Stabile S, Vande Velde C. Endogenous TDP-43, but not FUS, contributes to stress granule assembly via G3BP. Mol Neurodegener. 2012;7:54; DOI: 10.1186/1750-1326-7-54.AulasAStabileSVande VeldeCEndogenous TDP-43, but not FUS, contributes to stress granule assembly via G3BPMol Neurodegener201275410.1186/1750-1326-7-54350246023092511Open DOISearch in Google Scholar

Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006;314(5796):130–3; DOI: 10.1126/science.1134108.NeumannMSampathuDMKwongLKTruaxACMicsenyiMCChouTTUbiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosisScience20063145796130310.1126/science.113410817023659Open DOISearch in Google Scholar

Arai T, Hasegawa M, Akiyama H, Ikeda K, Nonaka T, Mori H, et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun. 2006;351(3):602–11; DOI: 10.1016/j.bbrc.2006.10.093.AraiTHasegawaMAkiyamaHIkedaKNonakaTMoriHTDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosisBiochem Biophys Res Commun200635136021110.1016/j.bbrc.2006.10.09317084815Open DOISearch in Google Scholar

Khalfallah Y, Kuta R, Grasmuck C, Prat A, Durham HD, Vande Velde C. TDP-43 regulation of stress granule dynamics in neurodegenerative disease-relevant cell types. Sci Rep. 2018;8(1):7551; DOI: 10.1038/s41598-018-25767-0.KhalfallahYKutaRGrasmuckCPratADurhamHDVande VeldeCTDP-43 regulation of stress granule dynamics in neurodegenerative disease-relevant cell typesSci Rep201881755110.1038/s41598-018-25767-0595394729765078Open DOISearch in Google Scholar

Bosco DA, Lemay N, Ko HK, Zhou H, Burke C, Kwiatkowski TJ, Jr., et al. Mutant FUS proteins that cause amyotrophic lateral sclerosis incorporate into stress granules. Hum Mol Genet. 2010;19(21):4160–75; DOI: 10.1093/hmg/ddq335.BoscoDALemayNKoHKZhouHBurkeCKwiatkowskiTJJrMutant FUS proteins that cause amyotrophic lateral sclerosis incorporate into stress granulesHum Mol Genet2010192141607510.1093/hmg/ddq335298101420699327Open DOISearch in Google Scholar

Gal J, Zhang J, Kwinter DM, Zhai J, Jia H, Jia J, et al. Nuclear localization sequence of FUS and induction of stress granules by ALS mutants. Neurobiol Aging. 2011;32(12):2323 e27–40; DOI: 10.1016/j.neurobiolaging.2010.06.010.GalJZhangJKwinterDMZhaiJJiaHJiaJNuclear localization sequence of FUS and induction of stress granules by ALS mutantsNeurobiol Aging201132122323 e274010.1016/j.neurobiolaging.2010.06.010299792320674093Open DOISearch in Google Scholar

Ito D, Seki M, Tsunoda Y, Uchiyama H, Suzuki N. Nuclear transport impairment of amyotrophic lateral sclerosis-linked mutations in FUS/TLS. Ann Neurol. 2011;69(1):152–62; DOI: 10.1002/ana.22246.ItoDSekiMTsunodaYUchiyamaHSuzukiNNuclear transport impairment of amyotrophic lateral sclerosis-linked mutations in FUS/TLSAnn Neurol20116911526210.1002/ana.2224621280085Open DOISearch in Google Scholar

Dormann D, Rodde R, Edbauer D, Bentmann E, Fischer I, Hruscha A, et al. ALS-associated fused in sarcoma (FUS) mutations disrupt Transportin-mediated nuclear import. EMBO J. 2010;29(16):2841–57; DOI: 10.1038/emboj.2010.143.DormannDRoddeREdbauerDBentmannEFischerIHruschaAALS-associated fused in sarcoma (FUS) mutations disrupt Transportin-mediated nuclear importEMBO J2010291628415710.1038/emboj.2010.143292464120606625Open DOISearch in Google Scholar

Li W, Li Y, Kedersha N, Anderson P, Emara M, Swiderek KM, et al. Cell proteins TIA-1 and TIAR interact with the 3’ stem-loop of the West Nile virus complementary minus-strand RNA and facilitate virus replication. J Virol. 2002;76(23):11989–2000; DOI: 10.1128/jvi.76.23.11989-12000.2002.LiWLiYKedershaNAndersonPEmaraMSwiderekKMCell proteins TIA-1 and TIAR interact with the 3’ stem-loop of the West Nile virus complementary minus-strand RNA and facilitate virus replicationJ Virol2002762311989200010.1128/jvi.76.23.11989-12000.200213688412414941Open DOISearch in Google Scholar

Valiente-Echeverria F, Melnychuk L, Mouland AJ. Viral modulation of stress granules. Virus Res. 2012;169(2):430–7; DOI: 10.1016/j.virusres.2012.06.004.Valiente-EcheverriaFMelnychukLMoulandAJViral modulation of stress granulesVirus Res20121692430710.1016/j.virusres.2012.06.004711439522705970Open DOISearch in Google Scholar

White JP, Cardenas AM, Marissen WE, Lloyd RE. Inhibition of cytoplasmic mRNA stress granule formation by a viral proteinase. Cell Host Microbe. 2007;2(5):295–305; DOI: 10.1016/j.chom.2007.08.006.WhiteJPCardenasAMMarissenWELloydREInhibition of cytoplasmic mRNA stress granule formation by a viral proteinaseCell Host Microbe20072529530510.1016/j.chom.2007.08.00618005751Open DOISearch in Google Scholar

Ng CS, Jogi M, Yoo JS, Onomoto K, Koike S, Iwasaki T, et al. Encephalomyocarditis virus disrupts stress granules, the critical platform for triggering antiviral innate immune responses. J Virol. 2013;87(17):9511–22; DOI: 10.1128/JVI.03248-12.NgCSJogiMYooJSOnomotoKKoikeSIwasakiTEncephalomyocarditis virus disrupts stress granules, the critical platform for triggering antiviral innate immune responsesJ Virol2013871795112210.1128/JVI.03248-12375412223785203Open DOISearch in Google Scholar

Isler JA, Skalet AH, Alwine JC. Human cytomegalovirus infection activates and regulates the unfolded protein response. J Virol. 2005;79(11):6890–9; DOI: 10.1128/JVI.79.11.6890-6899.2005.IslerJASkaletAHAlwineJCHuman cytomegalovirus infection activates and regulates the unfolded protein responseJ Virol200579116890910.1128/JVI.79.11.6890-6899.2005111212715890928Open DOISearch in Google Scholar

Arruebo M, Vilaboa N, Saez-Gutierrez B, Lambea J, Tres A, Valladares M, et al. Assessment of the evolution of cancer treatment therapies. Cancers (Basel). 2011;3(3):3279–330; DOI: 10.3390/cancers3033279.ArrueboMVilaboaNSaez-GutierrezBLambeaJTresAValladaresMAssessment of the evolution of cancer treatment therapiesCancers (Basel)201133327933010.3390/cancers3033279375919724212956Open DOISearch in Google Scholar

Panas MD, Ivanov P, Anderson P. Mechanistic insights into mammalian stress granule dynamics. J Cell Biol. 2016;215(3):313–23; DOI: 10.1083/jcb.201609081.PanasMDIvanovPAndersonPMechanistic insights into mammalian stress granule dynamicsJ Cell Biol201621533132310.1083/jcb.201609081510029727821493Open DOISearch in Google Scholar

Gao X, Jiang L, Gong Y, Chen X, Ying M, Zhu H, et al. Stress granule: A promising target for cancer treatment. Br J Pharmacol. 2019;176(23):4421–33; DOI: 10.1111/bph.14790.GaoXJiangLGongYChenXYingMZhuHStress granule: A promising target for cancer treatmentBr J Pharmacol20191762344213310.1111/bph.14790693293931301065Open DOISearch in Google Scholar

Anderson P, Kedersha N, Ivanov P. Stress granules, P-bodies and cancer. Biochim Biophys Acta. 2015;1849(7):861–70; DOI: 10.1016/j.bbagrm.2014.11.009.AndersonPKedershaNIvanovPStress granules, P-bodies and cancerBiochim Biophys Acta2015184978617010.1016/j.bbagrm.2014.11.009445770825482014Open DOISearch in Google Scholar

Franchini DM, Lanvin O, Tosolini M, Patras de Campaigno E, Cammas A, Pericart S, et al. Microtubule-Driven Stress Granule Dynamics Regulate Inhibitory Immune Checkpoint Expression in T Cells. Cell Rep. 2019;26(1):94–107 e7; DOI: 10.1016/j.celrep.2018.12.014.FranchiniDMLanvinOTosoliniMPatras de CampaignoECammasAPericartSMicrotubule-Driven Stress Granule Dynamics Regulate Inhibitory Immune Checkpoint Expression in T CellsCell Rep201926194107 e710.1016/j.celrep.2018.12.01430605689Open DOISearch in Google Scholar

eISSN:
2544-3577
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Molekularbiologie, Biochemie