Zitieren

Huppertz B. The anatomy of the normal placenta. J Clin Pathol. 2008;61:1296–302; DOI:10.1136/jcp.2008.055277.HuppertzBThe anatomy of the normal placentaJ Clin Pathol200861129630210.1136/jcp.2008.055277Open DOISearch in Google Scholar

Aplin JD, Myers JE, Timms K, Westwood M. Tracking placental development in health and disease. Nat Rev Endocrinol. 2020;16:479–94; DOI:10.1038/s41574-020-0372-6.AplinJDMyersJETimmsKWestwoodMTracking placental development in health and diseaseNat Rev Endocrinol2020164799410.1038/s41574-020-0372-6Open DOISearch in Google Scholar

Huppertz B. Placental origins of preeclampsia: Challenging the current hypothesis. Hypertension. 2008;51; DOI:10.1161/HYPERTENSIONAHA.107.107607.HuppertzBPlacental origins of preeclampsia: Challenging the current hypothesisHypertension20085110.1161/HYPERTENSIONAHA.107.107607Open DOISearch in Google Scholar

Ma J, Wu J, Han L, Jiang X, Yan L, Hao J, Wang H. Comparative analysis of mesenchymal stem cells derived from amniotic membrane, umbilical cord, and chorionic plate under serum-free condition. Stem Cell Res Ther. 2019;10; DOI:10.1186/s13287-018-1104-x.MaJWuJHanLJiangXYanLHaoJWangHComparative analysis of mesenchymal stem cells derived from amniotic membrane, umbilical cord, and chorionic plate under serum-free conditionStem Cell Res Ther20191010.1186/s13287-018-1104-xOpen DOISearch in Google Scholar

Shen C, Yang C, Xu S, Zhao H. Comparison of osteogenic differentiation capacity in mesenchymal stem cells derived from human amniotic membrane (AM), umbilical cord (UC), chorionic membrane (CM), and decidua (DC). Cell Biosci. 2019;9; DOI:10.1186/s13578-019-0281-3.ShenCYangCXuSZhaoHComparison of osteogenic differentiation capacity in mesenchymal stem cells derived from human amniotic membrane (AM), umbilical cord (UC), chorionic membrane (CM), and decidua (DC)Cell Biosci2019910.1186/s13578-019-0281-3Open DOISearch in Google Scholar

Magatti M, Pianta S, Silini A, Parolini O. Isolation, culture, and phenotypic characterization of mesenchymal stromal cells from the amniotic membrane of the human term placenta. Methods Mol. Biol., 2016; DOI:10.1007/978-1-4939-3584-0_13.MagattiMPiantaSSiliniAParoliniOIsolation, culture, and phenotypic characterization of mesenchymal stromal cells from the amniotic membrane of the human term placentaMethods Mol. Biol201610.1007/978-1-4939-3584-0_13Open DOISearch in Google Scholar

Murphy MB, Moncivais K, Caplan AI. Mesenchymal stem cells: Environmentally responsive therapeutics for regenerative medicine. Exp Mol Med. 2013;45; DOI:10.1038/emm.2013.94.MurphyMBMoncivaisKCaplanAIMesenchymal stem cells: Environmentally responsive therapeutics for regenerative medicineExp Mol Med20134510.1038/emm.2013.94Open DOISearch in Google Scholar

Okae H, Toh H, Sato T, Hiura H, Takahashi S, Shirane K, Kabayama Y, Suyama M, Sasaki H, Arima T. Derivation of Human Trophoblast Stem Cells. Cell Stem Cell. 2018;22; DOI:10.1016/j.stem.2017.11.004.OkaeHTohHSatoTHiuraHTakahashiSShiraneKKabayamaYSuyamaMSasakiHArimaTDerivation of Human Trophoblast Stem CellsCell Stem Cell20182210.1016/j.stem.2017.11.004Open DOISearch in Google Scholar

Hemberger M, Hanna CW, Dean W. Mechanisms of early placental development in mouse and humans. Nat Rev Genet. 2020;21:27–43; DOI:10.1038/s41576-019-0169-4.HembergerMHannaCWDeanWMechanisms of early placental development in mouse and humansNat Rev Genet202021274310.1038/s41576-019-0169-4Open DOISearch in Google Scholar

Ashary N, Tiwari A, Modi D. Embryo Implantation: War in times of love. Endocrinology. 2018;159:1188–98; DOI:10.1210/en.2017-03082.AsharyNTiwariAModiDEmbryo Implantation: War in times of loveEndocrinology201815911889810.1210/en.2017-03082Open DOISearch in Google Scholar

Turco MY, Moffett A. Development of the human placenta. Dev. 2019;146:1–14; DOI:10.1242/dev.163428.TurcoMYMoffettADevelopment of the human placentaDev201914611410.1242/dev.163428Open DOISearch in Google Scholar

Knöfler M, Haider S, Saleh L, Pollheimer J, Gamage TKJB, James J. Human placenta and trophoblast development: key molecular mechanisms and model systems. Cell Mol Life Sci. 2019;76:3479–96; DOI:10.1007/s00018-019-03104-6.KnöflerMHaiderSSalehLPollheimerJGamageTKJBJamesJ.Human placenta and trophoblast development: key molecular mechanisms and model systemsCell Mol Life Sci20197634799610.1007/s00018-019-03104-6Open DOISearch in Google Scholar

Gamage TKJB, Chamley LW, James JL. Stem cell insights into human trophoblast lineage differentiation. Hum Reprod Update. 2016;23:77–103; DOI:10.1093/humupd/dmw026.GamageTKJBChamleyLWJamesJLStem cell insights into human trophoblast lineage differentiationHum Reprod Update2016237710310.1093/humupd/dmw026Open DOISearch in Google Scholar

Boss AL, Chamley LW, James JL. Placental formation in early pregnancy: How is the centre of the placenta made? Hum Reprod Update. 2018;24:750–60; DOI:10.1093/humupd/dmy030.BossALChamleyLWJamesJLPlacental formation in early pregnancy: How is the centre of the placenta made?Hum Reprod Update2018247506010.1093/humupd/dmy030Open DOISearch in Google Scholar

Chang CW, Parast MM. Human trophoblast stem cells: Real or not real? Placenta. 2017;60; DOI:10.1016/j.placenta.2017.01.003.ChangCWParastMMHuman trophoblast stem cells: Real or not real?Placenta20176010.1016/j.placenta.2017.01.003Open DOISearch in Google Scholar

Tiruthani K, Sarkar P, Rao B. Trophoblast differentiation of human embryonic stem cells. Biotechnol J. 2013;8:421–33; DOI:10.1002/biot.201200203.TiruthaniKSarkarPRaoBTrophoblast differentiation of human embryonic stem cellsBiotechnol J201384213310.1002/biot.201200203Open DOISearch in Google Scholar

Staud F, Karahoda R. Trophoblast: The central unit of fetal growth, protection and programming. Int J Biochem Cell Biol. 2018;105:35–40; DOI:10.1016/j.biocel.2018.09.016.StaudFKarahodaRTrophoblast: The central unit of fetal growth, protection and programmingInt J Biochem Cell Biol2018105354010.1016/j.biocel.2018.09.016Open DOISearch in Google Scholar

Turco MY, Gardner L, Kay RG, Hamilton RS, Prater M, Hollinshead MS, McWhinnie A, Esposito L, Fernando R, Skelton H, Reimann F, Gribble FM, Sharkey A, Marsh SGE, O’rahilly S, Hemberger M, Burton GJ, Moffett A. Trophoblast organoids as a model for maternal–fetal interactions during human placentation. Nature. 2018;564:263–81; DOI:10.1038/s41586-018-0753-3.TurcoMYGardnerLKayRGHamiltonRSPraterMHollinsheadMSMcWhinnieAEspositoLFernandoRSkeltonHReimannFGribbleFMSharkeyAMarshSGEO’rahillySHembergerMBurtonGJMoffettATrophoblast organoids as a model for maternal–fetal interactions during human placentationNature20185642638110.1038/s41586-018-0753-3Open DOISearch in Google Scholar

Apicella C, Ruano CSM, Méhats C, Miralles F, Vaiman D. The role of epigenetics in placental development and the etiology of preeclampsia. Int J Mol Sci. 2019;20; DOI:10.3390/ijms20112837.ApicellaCRuanoCSMMéhatsCMirallesFVaimanDThe role of epigenetics in placental development and the etiology of preeclampsiaInt J Mol Sci20192010.3390/ijms20112837Open DOISearch in Google Scholar

Gamage TKJB, Schierding W, Hurley D, Tsai P, Ludgate JL, Bhoothpur C, Chamley LW, Weeks RJ, Macaulay EC, James JL. The role of DNA methylation in human trophoblast differentiation. Epigenetics. 2018;13:1154–73; DOI:10.1080/15592294.2018.1549462.GamageTKJBSchierdingWHurleyDTsaiPLudgateJLBhoothpurCChamleyLWWeeksRJMacaulayECJamesJLThe role of DNA methylation in human trophoblast differentiationEpigenetics20181311547310.1080/15592294.2018.1549462Open DOISearch in Google Scholar

Silver RM. Examining the link between placental pathology, growth restriction, and stillbirth. Best Pract Res Clin Obstet Gynaecol. 2018;49:89–102; DOI:10.1016/j.bpobgyn.2018.03.004.SilverRMExamining the link between placental pathology, growth restriction, and stillbirthBest Pract Res Clin Obstet Gynaecol2018498910210.1016/j.bpobgyn.2018.03.004Open DOISearch in Google Scholar

Gude NM, Roberts CT, Kalionis B, King RG. Growth and function of the normal human placenta. Thromb Res. 2004;114:397–407; DOI:10.1016/j.thromres.2004.06.038.GudeNMRobertsCTKalionisBKingRGGrowth and function of the normal human placentaThromb Res200411439740710.1016/j.thromres.2004.06.038Open DOISearch in Google Scholar

Weatherall EL, Avilkina V, Cortes-Araya Y, Dan-Jumbo S, Stenhouse C, Donadeu FX, Esteves CL. Differentiation Potential of Mesenchymal Stem/Stromal Cells Is Altered by Intrauterine Growth Restriction. Front Vet Sci. 2020;7:1–9; DOI:10.3389/fvets.2020.558905.WeatherallELAvilkinaVCortes-ArayaYDan-JumboSStenhouseCDonadeuFXEstevesCLDifferentiation Potential of Mesenchymal Stem/Stromal Cells Is Altered by Intrauterine Growth RestrictionFront Vet Sci202071910.3389/fvets.2020.558905Open DOISearch in Google Scholar

Komaki M, Numata Y, Morioka C, Honda I, Tooi M, Yokoyama N, Ayame H, Iwasaki K, Taki A, Oshima N, Morita I. Exosomes of human placenta-derived mesenchymal stem cells stimulate angiogenesis. Stem Cell Res Ther. 2017;8; DOI:10.1186/s13287-017-0660-9.KomakiMNumataYMoriokaCHondaITooiMYokoyamaNAyameHIwasakiKTakiAOshimaNMoritaIExosomes of human placenta-derived mesenchymal stem cells stimulate angiogenesisStem Cell Res Ther2017810.1186/s13287-017-0660-9Open DOISearch in Google Scholar

Clark K, Zhang S, Barthe S, Kumar P, Pivetti C, Kreutzberg N, Reed C, Wang Y, Paxton Z, Farmer D, Guo F, Wang A. Placental Mesenchymal Stem Cell-Derived Extracellular Vesicles Promote Myelin Regeneration in an Animal Model of Multiple Sclerosis. Cells. 2019;8; DOI:10.3390/cells8121497.ClarkKZhangSBartheSKumarPPivettiCKreutzbergNReedCWangYPaxtonZFarmerDGuoFWangAPlacental Mesenchymal Stem Cell-Derived Extracellular Vesicles Promote Myelin Regeneration in an Animal Model of Multiple SclerosisCells2019810.3390/cells8121497Open DOISearch in Google Scholar

Antoniadou E, David AL. Placental stem cells. Best Pract Res Clin Obstet Gynaecol. 2016;31:13–29; DOI:10.1016/j.bpobgyn.2015.08.014.AntoniadouEDavidALPlacental stem cellsBest Pract Res Clin Obstet Gynaecol201631132910.1016/j.bpobgyn.2015.08.014Open DOISearch in Google Scholar

Parolini O, Alviano F, Bagnara GP, Bilic G, Bühring H-J, Evangelista M, Hennerbichler S, Liu B, Magatti M, Mao N, Miki T, Marongiu F, Nakajima H, Nikaido T, Portmann-Lanz CB, Sankar V, Soncini M, Stadler G, Surbek D, Takahashi TA, Redl H, Sakuragawa N, Wolbank S, Zeisberger S, Zisch A, Strom SC. Concise Review: Isolation and Characterization of Cells from Human Term Placenta: Outcome of the First International Workshop on Placenta Derived Stem Cells. Stem Cells. 2008;26; DOI:10.1634/stemcells.2007-0594.ParoliniOAlvianoFBagnaraGPBilicGBühringH-JEvangelistaMHennerbichlerSLiuBMagattiMMaoNMikiTMarongiuFNakajimaHNikaidoTPortmann-LanzCBSankarVSonciniMStadlerGSurbekDTakahashiTARedlHSakuragawaNWolbankSZeisbergerSZischAStromSCConcise Review: Isolation and Characterization of Cells from Human Term Placenta: Outcome of the First International Workshop on Placenta Derived Stem CellsStem Cells20082610.1634/stemcells.2007-0594Open DOISearch in Google Scholar

Papait A, Vertua E, Magatti M, Ceccariglia S, De Munari S, Silini AR, Sheleg M, Ofir R, Parolini O. Mesenchymal Stromal Cells from Fetal and Maternal Placenta Possess Key Similarities and Differences: Potential Implications for Their Applications in Regenerative Medicine. Cells. 2020;9; DOI:10.3390/cells9010127.PapaitAVertuaEMagattiMCeccarigliaSDe MunariSSiliniARShelegMOfirRParoliniOMesenchymal Stromal Cells from Fetal and Maternal Placenta Possess Key Similarities and Differences: Potential Implications for Their Applications in Regenerative MedicineCells2020910.3390/cells9010127Open DOISearch in Google Scholar

Lin SC, Liou YM, Ling TY, Chuang YH, Chiang BL. Placenta-derived mesenchymal stem cells reduce the interleukin-5 level experimentally in children with asthma. Int J Med Sci. 2019;16; DOI:10.7150/ijms.33590.LinSCLiouYMLingTYChuangYHChiangBLPlacenta-derived mesenchymal stem cells reduce the interleukin-5 level experimentally in children with asthmaInt J Med Sci20191610.7150/ijms.33590Open DOISearch in Google Scholar

Tooi M, Komaki M, Morioka C, Honda I, Iwasaki K, Yokoyama N, Ayame H, Izumi Y, Morita I. Placenta Mesenchymal Stem Cell Derived Exosomes Confer Plasticity on Fibroblasts. J Cell Biochem. 2016;117; DOI:10.1002/jcb.25459.TooiMKomakiMMoriokaCHondaIIwasakiKYokoyamaNAyameHIzumiYMoritaIPlacenta Mesenchymal Stem Cell Derived Exosomes Confer Plasticity on FibroblastsJ Cell Biochem201611710.1002/jcb.25459Open DOISearch in Google Scholar

Heo JS, Choi Y, Kim HS, Kim HO. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue. Int J Mol Med. 2016;37; DOI:10.3892/ijmm.2015.2413.HeoJSChoiYKimHSKimHOComparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissueInt J Mol Med20163710.3892/ijmm.2015.2413Open DOISearch in Google Scholar

Bier A, Berenstein P, Kronfeld N, Morgoulis D, Ziv-Av A, Goldstein H, Kazimirsky G, Cazacu S, Meir R, Popovtzer R, Dori A, Brodie C. Placenta-derived mesenchymal stromal cells and their exosomes exert therapeutic effects in Duchenne muscular dystrophy. Biomaterials. 2018;174; DOI:10.1016/j.biomaterials.2018.04.055.BierABerensteinPKronfeldNMorgoulisDZiv-AvAGoldsteinHKazimirskyGCazacuSMeirRPopovtzerRDoriABrodieCPlacenta-derived mesenchymal stromal cells and their exosomes exert therapeutic effects in Duchenne muscular dystrophyBiomaterials201817410.1016/j.biomaterials.2018.04.055Open DOISearch in Google Scholar

Théry C, Amigorena S, Raposo G, Clayton A. Isolation and Characterization of Exosomes from Cell Culture Supernatants and Biological Fluids. Curr Protoc Cell Biol. 2006;30; DOI:10.1002/0471143030.cb0322s30.ThéryCAmigorenaSRaposoGClaytonA.Isolation and Characterization of Exosomes from Cell Culture Supernatants and Biological FluidsCurr Protoc Cell Biol20063010.1002/0471143030.cb0322s30Open DOISearch in Google Scholar

Tschuschke M, Kocherova I, Bryja A, Mozdziak P, Angelova Volponi A, Janowicz K, Sibiak R, Piotrowska-Kempisty H, Iżycki D, Bukowska D, Antosik P, Shibli JA, Dyszkiewicz-Konwińska M, Kempisty B. Inclusion Biogenesis, Methods of Isolation and Clinical Application of Human Cellular Exosomes. J Clin Med. 2020;9:436; DOI:10.3390/jcm9020436.TschuschkeMKocherovaIBryjaAMozdziakPAngelovaVolponi AJanowiczKSibiakRPiotrowska-KempistyHIżyckiDBukowskaDAntosikPShibliJADyszkiewicz-KonwińskaMKempistyB.Inclusion Biogenesis, Methods of Isolation and Clinical Application of Human Cellular ExosomesJ Clin Med2020943610.3390/jcm9020436Open DOISearch in Google Scholar

Kumar P, Becker JC, Gao K, Carney RP, Lankford L, Keller BA, Herout K, Lam KS, Farmer DL, Wang A. Neuroprotective effect of placenta-derived mesenchymal stromal cells: role of exosomes. FASEB J. 2019;33; DOI:10.1096/fj.201800972R.KumarPBeckerJCGaoKCarneyRPLankfordLKellerBAHeroutKLamKSFarmerDLWangANeuroprotective effect of placenta-derived mesenchymal stromal cells: role of exosomesFASEB J20193310.1096/fj.201800972ROpen DOISearch in Google Scholar

König J, Weiss G, Rossi D, Wankhammer K, Reinisch A, Kinzer M, Huppertz B, Pfeiffer D, Parolini O, Lang I. Placental mesenchymal stromal cells derived from blood vessels or avascular tissues: What is the better choice to support endothelial cell function? Stem Cells Dev. 2015;24; DOI:10.1089/scd.2014.0115.KönigJWeissGRossiDWankhammerKReinischAKinzerMHuppertzBPfeifferDParoliniOLangIPlacental mesenchymal stromal cells derived from blood vessels or avascular tissues: What is the better choice to support endothelial cell function?Stem Cells Dev20152410.1089/scd.2014.0115Open DOISearch in Google Scholar

Abumaree MH, Abomaray FM, Alshabibi MA, AlAskar AS, Kalionis B. Immunomodulatory properties of human placental mesenchymal stem/stromal cells. Placenta. 2017;59:87–95; DOI:10.1016/j.placenta.2017.04.003.AbumareeMHAbomarayFMAlshabibiMAAlAskarASKalionisBImmunomodulatory properties of human placental mesenchymal stem/stromal cellsPlacenta201759879510.1016/j.placenta.2017.04.003Open DOISearch in Google Scholar

Kamprom W, Kheolamai P, U-Pratya Y, Supokawej A, Wattanapanitch M, Laowtammathron C, Roytrakul S, Issaragrisil S. Endothelial Progenitor Cell Migration-Enhancing Factors in the Secretome of Placental-Derived Mesenchymal Stem Cells. Stem Cells Int. 2016;2016; DOI:10.1155/2016/2514326.KampromWKheolamaiPU-PratyaYSupokawejAWattanapanitchMLaowtammathronCRoytrakulSIssaragrisilSEndothelial Progenitor Cell Migration-Enhancing Factors in the Secretome of Placental-Derived Mesenchymal Stem CellsStem Cells Int2016201610.1155/2016/2514326Open DOISearch in Google Scholar

Mathew SA, Naik C, Cahill PA, Bhonde RR. Placental mesenchymal stromal cells as an alternative tool for therapeutic angiogenesis. Cell Mol Life Sci. 2020;77:253–65; DOI:10.1007/s00018-019-03268-1.MathewSANaikCCahillPABhondeRRPlacental mesenchymal stromal cells as an alternative tool for therapeutic angiogenesisCell Mol Life Sci2020772536510.1007/s00018-019-03268-1Open DOISearch in Google Scholar

Ertl J, Pichlsberger M, Tuca AC, Wurzer P, Fuchs J, Geyer SH, Maurer-Gesek B, Weninger WJ, Pfeiffer D, Bubalo V, Parvizi D, Kamolz LP, Lang I. Comparative study of regenerative effects of mesenchymal stem cells derived from placental amnion, chorion and umbilical cord on dermal wounds. Placenta. 2018;65:37–46; DOI:10.1016/j.placenta.2018.04.004.ErtlJPichlsbergerMTucaACWurzerPFuchsJGeyerSHMaurer-GesekBWeningerWJPfeifferDBubaloVParviziDKamolzLPLangIComparative study of regenerative effects of mesenchymal stem cells derived from placental amnion, chorion and umbilical cord on dermal woundsPlacenta201865374610.1016/j.placenta.2018.04.004Open DOISearch in Google Scholar

Jabbarpour Z, Kiani J, Keshtkar S, Saidijam M, Ghahremani MH, Ahmadbeigi N. Effects of human placenta-derived mesenchymal stem cells with NK4 gene expression on glioblastoma multiforme cell lines. J Cell Biochem. 2020;121:1362–73; DOI:10.1002/jcb.29371.JabbarpourZKianiJKeshtkarSSaidijamMGhahremaniMHAhmadbeigiNEffects of human placenta-derived mesenchymal stem cells with NK4 gene expression on glioblastoma multiforme cell linesJ Cell Biochem202012113627310.1002/jcb.29371Open DOISearch in Google Scholar

Shende P, Subedi M. Pathophysiology, mechanisms and applications of mesenchymal stem cells for the treatment of spinal cord injury. Biomed Pharmacother. 2017;91:693–706; DOI:10.1016/j.biopha.2017.04.126.ShendePSubediMPathophysiology, mechanisms and applications of mesenchymal stem cells for the treatment of spinal cord injuryBiomed Pharmacother20179169370610.1016/j.biopha.2017.04.126Open DOISearch in Google Scholar

Jiang H, Zhang Y, Tian K, Wang B, Han S. Amelioration of experimental autoimmune encephalomyelitis through transplantation of placental derived mesenchymal stem cells. Sci Rep. 2017;7:1–16; DOI:10.1038/srep41837.JiangHZhangYTianKWangBHanSAmelioration of experimental autoimmune encephalomyelitis through transplantation of placental derived mesenchymal stem cellsSci Rep2017711610.1038/srep41837Open DOISearch in Google Scholar

Cho JS, Lee J, Jeong DU, Kim HW, Chang WS, Moon J, Chang JW. Effect of placenta-derived mesenchymal stem cells in a dementia rat model via microglial mediation: A comparison between stem cell transplant methods. Yonsei Med J. 2018;59:406–15; DOI:10.3349/ymj.2018.59.3.406.ChoJSLeeJJeongDUKimHWChangWSMoonJChangJWEffect of placenta-derived mesenchymal stem cells in a dementia rat model via microglial mediation: A comparison between stem cell transplant methodsYonsei Med J2018594061510.3349/ymj.2018.59.3.406Open DOISearch in Google Scholar

Park JM, Lee SH, Kim K Il, Kim WH, Cho JY, Hahm KB, Hong SP. Feasibility of intraperitoneal placental-derived mesenchymal stem cell injection in stomachs of diabetic mice. J Gastroenterol Hepatol. 2018;33:1242–7; DOI:10.1111/jgh.14045.ParkJMLeeSHKimK IlKimWHChoJYHahmKBHongSP.Feasibility of intraperitoneal placental-derived mesenchymal stem cell injection in stomachs of diabetic miceJ Gastroenterol Hepatol2018331242710.1111/jgh.14045Open DOISearch in Google Scholar

Tanaka S, Kunath T, Hadjantonakis AK, Nagy A, Rossant J. Promotion to trophoblast stem cell proliferation by FGF4. Science (80- ). 1998;282; DOI:10.1126/science.282.5396.2072.TanakaSKunathTHadjantonakisAKNagyARossantJPromotion to trophoblast stem cell proliferation by FGF4Science (80- )199828210.1126/science.282.5396.2072Open DOISearch in Google Scholar

Kubaczka C, Senner C, Araúzo-Bravo MJ, Sharma N, Kuckenberg P, Becker A, Zimmer A, Brüstle O, Peitz M, Hemberger M, Schorle H. Derivation and maintenance of murine trophoblast stem cells under defined conditions. Stem Cell Reports. 2014;2; DOI:10.1016/j.stemcr.2013.12.013.KubaczkaCSennerCAraúzo-BravoMJSharmaNKuckenbergPBeckerAZimmerABrüstleOPeitzMHembergerMSchorleHDerivation and maintenance of murine trophoblast stem cells under defined conditionsStem Cell Reports2014210.1016/j.stemcr.2013.12.013Open DOISearch in Google Scholar

Rivron NC, Frias-Aldeguer J, Vrij EJ, Boisset JC, Korving J, Vivié J, Truckenmüller RK, Van Oudenaarden A, Van Blitterswijk CA, Geijsen N. Blastocyst-like structures generated solely from stem cells. Nature. 2018;557; DOI:10.1038/s41586-018-0051-0.RivronNCFrias-AldeguerJVrijEJBoissetJCKorvingJViviéJTruckenmüllerRKVanOudenaarden AVanBlitterswijk CAGeijsenNBlastocyst-like structures generated solely from stem cellsNature201855710.1038/s41586-018-0051-0Open DOISearch in Google Scholar

Adachi K, Nikaido I, Ohta H, Ohtsuka S, Ura H, Kadota M, Wakayama T, Ueda HR, Niwa H. Context-Dependent Wiring of Sox2 Regulatory Networks for Self-Renewal of Embryonic and Trophoblast Stem Cells. Mol Cell. 2013;52; DOI:10.1016/j.molcel.2013.09.002.AdachiKNikaidoIOhtaHOhtsukaSUraHKadotaMWakayamaTUedaHRNiwaHContext-Dependent Wiring of Sox2 Regulatory Networks for Self-Renewal of Embryonic and Trophoblast Stem CellsMol Cell20135210.1016/j.molcel.2013.09.002Open DOISearch in Google Scholar

Ohinata Y, Tsukiyama T. Establishment of trophoblast stem cells under defined culture conditions in mice. PLoS One. 2014;9; DOI:10.1371/jo-urnal.pone.0107308.OhinataYTsukiyamaTEstablishment of trophoblast stem cells under defined culture conditions in micePLoS One2014910.1371/jo-urnal.pone.0107308Open DOISearch in Google Scholar

Horii M, Li Y, Wakeland AK, Pizzo DP, Nelson KK, Sabatini K, Laurent LC, Liu Y, Parast MM. Human pluripotent stem cells as a model of trophoblast differentiation in both normal development and disease. Proc Natl Acad Sci U S A. 2016;113; DOI:10.1073/pnas.1604747113.HoriiMLiYWakelandAKPizzoDPNelsonKKSabatiniKLaurentLCLiuYParastMMHuman pluripotent stem cells as a model of trophoblast differentiation in both normal development and diseaseProc Natl Acad Sci U S A201611310.1073/pnas.1604747113Open DOISearch in Google Scholar

Horii M, Bui T, Touma O, Cho HY, Parast MM. An Improved Two-Step Protocol for Trophoblast Differentiation of Human Pluripotent Stem Cells. Curr Protoc Stem Cell Biol. 2019;50; DOI:10.1002/cpsc.96.HoriiMBuiTToumaOChoHYParastMMAn Improved Two-Step Protocol for Trophoblast Differentiation of Human Pluripotent Stem CellsCurr Protoc Stem Cell Biol20195010.1002/cpsc.96Open DOISearch in Google Scholar

Roberts RM, Loh KM, Amita M, Bernardo AS, Adachi K, Alexenko AP, Schust DJ, Schulz LC, Telugu BPVL, Ezashi T, Pedersen RA. Differentiation of trophoblast cells from human embryonic stem cells: To be or not to be? Reproduction. 2014;147; DOI:10.1530/REP-14-0080.RobertsRMLohKMAmitaMBernardoASAdachiKAlexenkoAPSchustDJSchulzLCTeluguBPVLEzashiTPedersenRADifferentiation of trophoblast cells from human embryonic stem cells: To be or not to be?Reproduction201414710.1530/REP-14-0080Open DOISearch in Google Scholar

Amita M, Adachi K, Alexenko AP, Sinha S, Schust DJ, Schulz LC, Roberts RM, Ezashi T. Complete and unidirectional conversion of human embryonic stem cells to trophoblast by BMP4Proc Natl Acad Sci U S A. 2013;110; DOI:10.1073/pnas.1303094110.AmitaMAdachiKAlexenkoAPSinhaSSchustDJSchulzLCRobertsRMEzashiTComplete and unidirectional conversion of human embryonic stem cells to trophoblast by BMP4Proc Natl Acad Sci U S A201311010.1073/pnas.1303094110Open DOISearch in Google Scholar

eISSN:
2544-3577
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Molekularbiologie, Biochemie