Zitieren

Levine H, Jørgensen N, Martino-Andrade A, Mendiola J, Weksler-Derri D, Mindlis I, Pinotti R., Swan SH. Temporal trends in sperm count: A systematic review and meta-regression analysis. Hum Reprod Update. 2017;23(6):646–59. DOI:10.1093/humupd/dmx022.LevineHNJørgensenMartino-AndradeAMendiolaJWeksler-DerriDMindlisIPinottiR.SwanSHTemporal trends in sperm count: A systematic review and meta-regression analysisHum Reprod Update20172366465910.1093/humupd/dmx022Open DOISearch in Google Scholar

Gunes S, Sertyel S. Sperm DNA Damage and Oocyte Repair Capability. A Clin Guid to Sperm DNA Chromatin Damage. 2018;152(1):321–46. DOI:10.1007/978-3-319-71815-6_18.GunesSSertyelSSperm DNA Damage and Oocyte Repair CapabilityA Clin Guid to Sperm DNA Chromatin Damage201815213214610.1007/978-3-319-71815-6_18Open DOISearch in Google Scholar

ZiniA, Agarwal A, editors. Sperm chromatin: biological and clinical applications in male infertility. New York: Springer International Publishing; 2011. 512 p.ZiniAAgarwalASperm chromatin: biological and clinical applications in male infertilityNew YorkSpringer International Publishing201151210.1007/978-1-4419-6857-9Search in Google Scholar

Gusse M, Sauti P, Baiche D, Martinage A, Roux C, Dadoune JP, Chevaillier P. Purification and characterization of nuclear basic proteins of human sperm Electron microscopy. Biochim Biophys Acta - Gen Subj. 1986;884(1):124–34. DOI:10.1530/REP-16-0077.GusseMSautiPBaicheDMartinageARouxCDadouneJPChevaillierPPurification and characterization of nuclear basic proteins of human sperm Electron microscopyBiochim Biophys Acta - Gen Subj198688411243410.1530/REP-16-0077Open DOISearch in Google Scholar

Balhorn R. The protamine family of sperm nuclear proteins. Genome Biol. 2007;8(9):227. DOI:10.1186/gb-2007-8-9-227.BalhornRThe protamine family of sperm nuclear proteinsGenome Biol20078922710.1186/gb-2007-8-9-227Open DOISearch in Google Scholar

Kvist U, Afzelius B, Nilsson L. The intrinsic mechanism of chromatin decondensation and its activation in human spermatozoa. 1980;22(3):543–54. DOI:10.1111/j.1440-169X.1980.00543.x.KvistUAfzeliusBNilssonLThe intrinsic mechanism of chromatin decondensation and its activation in human spermatozoa19802235435410.1111/j.1440-169X.1980.00543.xOpen DOISearch in Google Scholar

Baldi E, Muratori M, editors. Genetic Damage in Human Spermatozoa. New York: Springer International Publishing; 2013. 194 p.BaldiEMuratoriMGenetic Damage in Human SpermatozoaNew YorkSpringer International Publishing2013194 p10.1007/978-1-4614-7783-9Search in Google Scholar

Zhao Y, Li Q, Yao C, Wang Z, Zhou Y, Wang Y, Liu L., Wang Y., Wang L., Qiao Z. Characterization and quantification of mRNA transcripts in ejaculated spermatozoa of fertile men by serial analysis of gene expression. 2006;21(6):1583–90. DOI:10.1093/humrep/del027.ZhaoYLiQYaoCWangZZhouYWangYLiuL.WangY.WangL.QiaoZCharacterization and quantification of mRNA transcripts in ejaculated spermatozoa of fertile men by serial analysis of gene expression200621615839010.1093/humrep/del027Open DOISearch in Google Scholar

Hecht NB, Kleene KC, Yelick PC, Johnson PA, Pravtcheva DD, Ruddle FH. Mapping of haploid expressed genes: Genes for both mouse protamines are located on chromosome 16. Somat Cell Mol Genet. 1986;12(2):203–8.DOI:10.1007/BF01560667.HechtNBKleeneKCYelickPCJohnsonPAPravtchevaDDRuddleFHMapping of haploid expressed genes: Genes for both mouse protamines are located on chromosome 16Somat Cell Mol Genet1986122203810.1007/BF01560667Open DOISearch in Google Scholar

Kaur Gill-Sharma M, Choudhuri J, D’Souza S. Sperm Chromatin Protamination: An Endocrine Perspective. Protein Pept Lett. 2012;18(8):786–801. DOI:10.2174/092986611795714005.KaurGill-Sharma MChoudhuriJD’SouzaSSperm Chromatin Protamination: An Endocrine PerspectiveProtein Pept Lett201218878680110.2174/092986611795714005Open DOISearch in Google Scholar

Barney GH, Orgebin-Crist MC, Macapinlac MP. Genesis of Esophageal Parakeratosis and Histologic Changes in the Testes of the Zinc-deficient Rat and Their Reversal by Zinc Repletion. J Nutr. 1968;95(4):526–34. DOI:10.1093/jn/95.4.526.BarneyGHOrgebin-CristMCMacapinlacMPGenesis of Esophageal Parakeratosis and Histologic Changes in the Testes of the Zinc-deficient Rat and Their Reversal by Zinc RepletionJ Nutr19689545263410.1093/jn/95.4.526Open DOISearch in Google Scholar

Björndahl L, Kvist U. Human sperm chromatin stabilization: A proposed model including zinc bridges. Mol Hum Reprod. 2009;16(1):23–9. DOI:10.1093/molehr/gap099.BjörndahlLKvistUHuman sperm chromatin stabilization: A proposed model including zinc bridgesMol Hum Reprod200916123910.1093/molehr/gap099Open DOISearch in Google Scholar

Kvist U, Bjorndahl L, Roomans GM, Lindholmer C. Nuclear zinc in human epididymal and ejaculated spermatozoa. Acta Physiol Scand. 1985;125(2):297–303. DOI:10.1111/j.1748-1716.1985.tb07719.x.KvistUBjorndahlLRoomansGMLindholmerCNuclear zinc in human epididymal and ejaculated spermatozoaActa Physiol Scand1985125229730310.1111/j.1748-1716.1985.tb07719.xOpen DOISearch in Google Scholar

Smith R, Vantman D, Ponce J, Escobar J. Total antioxidant capacity of human seminal plasma. Hum Reprod. 1996;11(8):1655–60. DOI:10.1093/oxfordjournals.humrep.a019465.SmithRVantmanDPonceJEscobarJTotal antioxidant capacity of human seminal plasmaHum Reprod199611816556010.1093/oxfordjournals.humrep.a019465Open DOISearch in Google Scholar

Alvarez JG, Storey BT. Role of Superoxide Dismutase in Protecting Rabbit Spermatozoa from O2 Toxicity Due to Lipid Peroxidation. Biol Reprod. 1983;28(5):1129–36. DOI:10.1095/biolreprod28.5.1129.AlvarezJGStoreyBTRole of Superoxide Dismutase in Protecting Rabbit Spermatozoa from O2 Toxicity Due to Lipid PeroxidationBiol Reprod198328511293610.1095/biolreprod28.5.1129Open DOISearch in Google Scholar

González-Marín C, Gosálvez J, Roy R. Types, Causes, Detection and Repair of DNA Fragmentation in Animal and Human Sperm Cells. Int J Mol Sci. 2012;13(12):14026–52. DOI:10.3390/ijms131114026.González-MarínCGosálvezJRoyRTypes, Causes, Detection and Repair of DNA Fragmentation in Animal and Human Sperm CellsInt J Mol Sci20121312140265210.3390/ijms131114026Open DOISearch in Google Scholar

Zenzes MT, Puy LA, Bielecki R. Immunodetection of benzo [ a ] pyrene adducts in ovarian cells of women exposed to cigarette smoke. 1998;4(2):159–65. DOI:10.1093/molehr/4.2.159.ZenzesMTPuyLABieleckiRImmunodetection of benzo [ a ] pyrene adducts in ovarian cells of women exposed to cigarette smoke1998421596510.1093/molehr/4.2.159Open DOISearch in Google Scholar

Ménézo Y, Dale B, Cohen M. DNA damage and repair in human oocytes and embryos: A review. Zygote. 2010;18(4):357–65. DOI:10.1017/S0967199410000286.MénézoYDaleBCohenMDNA damage and repair in human oocytes and embryos: A reviewZygote20101843576510.1017/S0967199410000286Open DOISearch in Google Scholar

Rothkamm K, Krüger I, Thompson LH, Löbrich M. Pathways of DNA Double-Strand Break Repair during the Mammalian Cell Cycle. Society. 2003;23(16):5706–15. DOI:10.1128/mcb.23.16.5706-5715.2003.RothkammKKrügerIThompsonLHLöbrichMPathways of DNA Double-Strand Break Repair during the Mammalian Cell CycleSociety2003231657061510.1128/mcb.23.16.5706-5715.2003Open DOISearch in Google Scholar

Gardner DK, Sakkas D, Seli E, Wells D , editors. Human Gametes and Pre-implantation Embryos. New York: Springer; 2013. 321 p.GardnerDKSakkasDSeliEWellsDHuman Gametes and Pre-implantation EmbryosNew YorkSpringer2013321 p10.1007/978-1-4614-6651-2Search in Google Scholar

Ahmadi ALI, Ng S. Fertilizing Ability of DNA-Damaged Spermatozoa. 1999;(June 1998):696–704. DOI:10.1002/(sici)1097-010x(19991101)284:6<696::aid-jez11>3.0.co;2-e.AhmadiALINgSFertilizing Ability of DNA-Damaged Spermatozoa1999June 199869670410.1002/(sici)1097-010x(19991101)284:6<696::aid-jez11>3.0.co;2-eOpen DOISearch in Google Scholar

Horta F, Catt S, Ramachandran P, Vollenhoven B, Temple-Smith P. Female ageing affects the DNA repair capacity of oocytes in IVF using a controlled model of sperm DNA damage in mice. Hum Reprod. 2020;35(3):529–44. DOI:10.1093/humrep/dez308.HortaFCattSRamachandranPVollenhovenBTemple-SmithPFemale ageing affects the DNA repair capacity of oocytes in IVF using a controlled model of sperm DNA damage in miceHum Reprod20203535294410.1093/humrep/dez308Open DOISearch in Google Scholar

Liu L, Keefe DL. Defective cohesin is associated with age-dependent misaligned chromosomes in oocytes. Reprod Biomed Online [Internet]. 2008;16(1):103–12. Available from: http://dx.doi.org/10.1016/S1472-6483(10)60562-7LiuLKeefeDLDefective cohesin is associated with age-dependent misaligned chromosomes in oocytesReprod Biomed Online [Internet]200816110312Available fromhttp://dx.doi.org/10.1016/S1472-6483(10)60562-710.1016/S1472-6483(10)60562-7Search in Google Scholar

Cimadomo D, Fabozzi G, Vaiarelli A, Ubaldi N, Ubaldi FM, Rienzi L. Impact of maternal age on oocyte and embryo competence. Front Endocrinol (Lausanne). 2018;9(327). DOI:10.3389/fendo.2018.00327.CimadomoDFabozziGVaiarelliAUbaldiNUbaldiFMRienziLImpact of maternal age on oocyte and embryo competenceFront Endocrinol (Lausanne)2018932710.3389/fendo.2018.00327Open DOISearch in Google Scholar

Marchetti F, Essers J, Kanaar R, Wyrobek AJ. Disruption of maternal DNA repair increases sperm-derived chromosomal aberrations. 2016;104(45):17725–9. DOI:10.1073/pnas.0705257104.MarchettiFEssersJKanaarRWyrobekAJDisruption of maternal DNA repair increases sperm-derived chromosomal aberrations20161044517725910.1073/pnas.0705257104Open DOISearch in Google Scholar

Antonouli S, Papatheodorou A, Panagiotidis Y, Petousis S, Prapas N. The impact of sperm DNA fragmentation on ICSI outcome in cases of donated oocytes. Arch Gynecol Obstet [Internet]. 2019;300(1):207-215. Available from: https://doi.org/10.1007/s00404-019-05133-9AntonouliSPapatheodorouAPanagiotidisYPetousisSPrapasNThe impact of sperm DNA fragmentation on ICSI outcome in cases of donated oocytesArch Gynecol Obstet [Internet]20193001207215Available fromhttps://doi.org/10.1007/s00404-019-05133-910.1007/s00404-019-05133-9Search in Google Scholar

eISSN:
2544-3577
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Molekularbiologie, Biochemie