Zitieren

1. Stępień-Wyrobiec O, Hrycek A, Wyrobiec G. Transforming growth factor beta (TGF-beta): Its structure, function, and role in the pathogenesis of systemic lupus erythematosus. Post Hig Med Dosw. 2008;62:688–93.Search in Google Scholar

2. Adorini L. Cytokine-based immunointervention in the treatment of autoimmune diseases. Clin Exp Immunol. 2003;132(2):185–92.10.1046/j.1365-2249.2003.02144.xSearch in Google Scholar

3. Flanders KC, Burmester JK. Medical applications of transforming growth factor-beta. Clin Med Res. 2003;1(1):13–20.10.3121/cmr.1.1.13Search in Google Scholar

4. Krzemień S, Knapczyk P. Aktualne poglądy dotyczące znaczenia transformującego czynnika wzrostu beta (TGF-β) w patogenezie niektórych stanów chorobowych. Wiad Lek. 2005;58(9-10):536–9.Search in Google Scholar

5. Glister C, Kemp CF, Knight PG. Bone morphogenetic protein (BMP) ligands and receptors in bovine ovarian follicle cells: actions of BMP-4, -6 and -7 on granulosa cells and differential modulation of Smad-1 phosphorylation by follistatin. Reprod. 2004;127(2):239–54; DOI:10.1530/rep.1.00090.10.1530/rep.1.00090Search in Google Scholar

6. Glister C, Richards SL, Knight PG. Bone morphogenetic proteins (BMP) -4, -6, and -7 potently suppress basal and luteinizing hormone-induced androgen production by bovine theca interna cells in primary culture: could ovarian hyperandrogenic dysfunction be caused by a defect in thecal BMP signaling? Endocrinology. 2005;146(4):1883–92; DOI:10.1210/en.2004-1303.10.1210/en.2004-1303Search in Google Scholar

7. Knight PG, Glister C. Local roles of TGF-beta superfamily members in the control of ovarian follicle development. Anim Reprod Sci. 2003;78(3-4):165–83.10.1016/S0378-4320(03)00089-7Search in Google Scholar

8. Massagué J, Wotton D. Transcriptional control by the TGF-beta/Smad signaling system. EMBO J. 2000;19(8):1745–54; DOI:10.1093/emboj/19.8.1745.10.1093/emboj/19.8.1745Search in Google Scholar

9. Moustakas A, Pardali K, Gaal A, Heldin CH. Mechanisms of TGF-beta signaling in regulation of cell growth and differentiation. Immunol Lett. 2002;82(1-2):85–91.10.1016/S0165-2478(02)00023-8Search in Google Scholar

10. Border WA, Noble NA. Transforming growth factor beta in tissue fibrosis. N Engl J Med. 1994;331(19):1286–92; DOI:10.1056/NEJM199411103311907.10.1056/NEJM1994111033119077935686Search in Google Scholar

11. Buck MB, Fritz P, Dippon J, Zugmaier G, Knabbe C. Prognostic significance of transforming growth factor beta receptor II in estrogen receptor-negative breast cancer patients. Clin Cancer Res. 2004;10(2):491–8.10.1158/1078-0432.CCR-0320-0314760070Search in Google Scholar

12. Pepper MS, Belin D, Montesano R, Orci L, Vassalli JD. Transforming growth factor-beta 1 modulates basic fibroblast growth factor-induced proteolytic and angiogenic properties of endothelial cells in vitro. J Cell Biol. 1990;111(2):743–55.10.1083/jcb.111.2.74321162131696269Search in Google Scholar

13. Ziv E, Cauley J, Morin PA, Saiz R, Browner WS. Association between the T29--C polymorphism in the transforming growth factor beta1 gene and breast cancer among elderly white women: The Study of Osteoporotic Fractures. JAMA. 2001;285(22):2859–63.10.1001/jama.285.22.285911401606Search in Google Scholar

14. Ni N, Li Q. TGFβ superfamily signaling and uterine decidualization. Reprod Biol Endocrinol. 2017;15(1):75; DOI:10.1186/s12958-017-0303-0.10.1186/s12958-017-0303-0564093429029620Search in Google Scholar

15. Knight PG, Glister C. TGF-beta superfamily members and ovarian follicle development. Reproduction. 2006;132(2):191–206; DOI:10.1530/rep.1.01074.10.1530/rep.1.0107416885529Search in Google Scholar

16. Tanimoto K, Suzuki A, Ohno S, Honda K, Tanaka N, Doi T, Yoneno K, Ohno-Nakahara M, Nakatani Y, Ueki M, Tanne K. Effects of TGF-beta on hyaluronan anabolism in fibroblasts derived from the syno-vial membrane of the rabbit temporomandibular joint. J Dent Res. 2004;83(1):40–4; DOI:10.1177/154405910408300108.10.1177/15440591040830010814691111Search in Google Scholar

17. Asano Y, Ihn H, Yamane K, Kubo M, Tamaki K. Impaired Smad7-Smurf-mediated negative regulation of TGF-beta signaling in scleroderma fibro-blasts. J Clin Invest. 2004;113(2):253–64; DOI:10.1172/JCI16269.10.1172/JCI1626931074714722617Search in Google Scholar

18. Caserta TM, Knisley AA, Tan FK, Arnett FC, Brown TL. Genotypic analysis of the TGF beta-509 allele in patients with systemic lupus erythematosus and Sjogren’s syndrome. Ann Genet. 2004;47(4):359–63; DOI:10.1016/j.anngen.2004.07.003.10.1016/j.anngen.2004.07.00315581833Search in Google Scholar

19. Lu L-Y, Cheng H-H, Sung P-K, Yeh J-J, Shiue Y-L, Chen A. Single-nucleotide polymorphisms of transforming growth factor-beta1 gene in Taiwanese patients with systemic lupus erythematosus. J Microbiol Immunol Infect. 2004;37(3):145–52.Search in Google Scholar

20. Feinberg MW, Jain MK. Role of transforming growth factor-beta1/Smads in regulating vascular inflammation and atherogenesis. Panminerva Med. 2005;47(3):169–86.Search in Google Scholar

21. Niemczyk M, Foroncewicz B, Mucha K. Rola TGF beta. Pol Arch Med Wet. 2005;113(4):401–8.Search in Google Scholar

22. Luedecking EK, DeKosky ST, Mehdi H, Ganguli M, Kamboh MI. Analysis of genetic polymorphisms in the transforming growth factor-β1 gene and the risk of Alzheimer’s disease. Hum Genet. 2000;106(5):565–9; DOI:10.1007/s004390000313.10.1007/s00439000031310914688Search in Google Scholar

23. Maurya VK, Jha RK, Kumar V, Joshi A, Chadchan S, Mohan JJ, Laloraya M. Transforming growth factor-beta 1 (TGF-B1) liberation from its latent complex during embryo implantation and its regulation by estradiol in mouse. Biol Reprod. 2013;89(4):84; DOI:10.1095/biolreprod.112.106542.10.1095/biolreprod.112.10654223926286Search in Google Scholar

24. Wang Z-P, Mu X-Y, Guo M, Wang Y-J, Teng Z, Mao G-P, Niu W-B, Feng L-Z, Zhao L-H, Xia G-L. Transforming growth factor-β signaling participates in the maintenance of the primordial follicle pool in the mouse ovary. J Biol Chem. 2014;289(12):8299–311; DOI:10.1074/jbc.M113.532952.10.1074/jbc.M113.532952396165724515103Search in Google Scholar

25. Rosairo D, Kuyznierewicz I, Findlay J, Drummond A. Transforming growth factor-beta: its role in ovarian follicle development. Reproduction. 2008;136(6):799–809; DOI:10.1530/REP-08-0310.10.1530/REP-08-031018780765Search in Google Scholar

26. Li Q, Agno JE, Edson MA, Nagaraja AK, Nagashima T, Matzuk MM. Transforming Growth Factor β Receptor Type 1 Is Essential for Female Reproductive Tract Integrity and Function. PLoS Genet. 2011;7(10):e1002320; DOI:10.1371/journal.pgen.1002320.10.1371/journal.pgen.1002320Search in Google Scholar

27. Robertson D. Inhibin/activin and ovarian cancer. Endocr Relat Cancer. 2004;11(1):35–49; DOI:10.1677/erc.0.0110035.10.1677/erc.0.0110035Search in Google Scholar

28. Męczekalski B, Podfigurna-Stopa A. Rola inhibin w funkcjach i dysfunkcjach rozrodczych kobiety. Pol Mer Lek. 2009.Search in Google Scholar

29. Makanji Y, Zhu J, Mishra R, Holmquist C, Wong WPS, Schwartz NB, Mayo KE, Woodruff TK. Inhibin at 90: From Discovery to Clinical Application, a Historical Review. Endocr Rev. 2014;35(5):747–94; DOI:10.1210/er.2014-1003.10.1210/er.2014-1003Search in Google Scholar

30. Florio P, Severi FM, Cobellis L, Danero S, Bomè A, Luisi S, Petraglia F. Serum activin A and inhibin A. New clinical markers for hydatidiform mole. Cancer. 2002;94(10):2618–22.10.1002/cncr.10524Search in Google Scholar

31. Welt CK, Schneyer AL. Differential regulation of inhibin B and inhibin a by follicle-stimulating hormone and local growth factors in human granulosa cells from small antral follicles. J Clin Endocrinol Metab. 2001;86(1):330–6; DOI:10.1210/jcem.86.1.7107.10.1210/jcem.86.1.7107Search in Google Scholar

32. Burger HG, Fuller PJ, Chu S, Mamers P, Drummond A, Susil B, Neva P, Robertson DM. The inhibins and ovarian cancer. Mol Cell Endocrinol. 2001;180(1-2):145–8; DOI:10.1016/S0303-7207(01)00519-6.10.1016/S0303-7207(01)00519-6Search in Google Scholar

33. Myers M, Middlebrook BS, Matzuk MM, Pangas SA. Loss of inhibin alpha uncouples oocyte-granulosa cell dynamics and disrupts postnatal folliculogenesis. Dev Biol. 2009;334(2):458–67; DOI:10.1016/j.ydbio.2009.08.001.10.1016/j.ydbio.2009.08.001275371719666016Search in Google Scholar

34. Belli M, Shimasaki S. Molecular Aspects and Clinical Relevance of GDF9 and BMP15 in Ovarian Function. In: Ovarian Cycle: Elsevier; 2018. p. 317–48 [Vitamins and Hormones]; DOI:10.1016/bs.vh.2017.12.003.10.1016/bs.vh.2017.12.003630967829544636Search in Google Scholar

35. Jee BC, Lee JR, Suh CS, Kim SH, Moon SY. Follicular fluid growth differentiation factor-9 concentration and oocyte developmental competence. J Womens Med. 2011;4(1):1; DOI:10.5468/jwm.2011.4.1.1.10.5468/jwm.2011.4.1.1Search in Google Scholar

36. Teixeira Filho FL, Baracat EC, Lee TH, Suh CS, Matsui M, Chang RJ, Shimasaki S, Erickson GF. Aberrant expression of growth differentiation factor-9 in oocytes of women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2002;87(3):1337–44; DOI:10.1210/jcem.87.3.8316.10.1210/jcem.87.3.831611889206Search in Google Scholar

37. Castro FCd, Cruz MHC, Leal CLV. Role of Growth Differentiation Factor 9 and Bone Morphogenetic Protein 15 in Ovarian Function and Their Importance in Mammalian Female Fertility — A Review. Asian Australas J Anim Sci. 2016;29(8):1065–74; DOI:10.5713/ajas.15.0797.10.5713/ajas.15.0797493255926954112Search in Google Scholar

38. Drummond AE. TGFbeta signalling in the development of ovarian function. Cell Tissue Res. 2005;322(1):107–15; DOI:10.1007/s00441-005-1153-1.10.1007/s00441-005-1153-115983782Search in Google Scholar

39. Bierie B, Moses HL. Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer. 2006;6(7):506–20; DOI:10.1038/nrc1926.10.1038/nrc192616794634Search in Google Scholar

40. O sterlund C, Fried G. TGFβ receptor types I and II and the substrate proteins Smad 2 and 3 are present in human oocytes. Mol Hum Reprod. 2000;6(6):498–503; DOI:10.1093/molehr/6.6.498.10.1093/molehr/6.6.49810825365Search in Google Scholar

41. Miyazono K. Positive and negative regulation of TGF-beta signaling. J Cell Sci. 2000;113 (Pt 7):1101–9.10.1242/jcs.113.7.110110704361Search in Google Scholar

42. Caestecker M de. The transforming growth factor-β superfamily of receptors. Cytokine Growth Factor Rev. 2004;15(1):1–11; DOI:10.1016/j.cytogfr.2003.10.004.10.1016/j.cytogfr.2003.10.00414746809Search in Google Scholar

43. Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 2003;425(6958):577–84; DOI:10.1038/nature02006.10.1038/nature0200614534577Search in Google Scholar

44. Moustakas A. Non-Smad TGF-signals. J Cell Sci. 2005;118(16):3573–84; DOI:10.1242/jcs.02554.10.1242/jcs.0255416105881Search in Google Scholar

eISSN:
2544-3577
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Molekularbiologie, Biochemie