Zitieren

1. Orisaka M, Tajima K, Tsang BK, Kotsuji F. Oocyte-granulosa-theca cell interactions during preantral follicular development. J Ovarian Res. 2009;2(1):9; DOI:10.1186/1757-2215-2-9.10.1186/1757-2215-2-9Open DOISearch in Google Scholar

2. Schoevers EJ, Colenbrander B, Roelen BA. Developmental stage of the oocyte during antral follicle growth and cumulus investment determines in vitro embryo development of sow oocytes. Theriogenology.2007;67(6):1108-1122; DOI:10.1016/j.theriogenology.2006.12.009.10.1016/j.theriogenology.2006.12.009Open DOISearch in Google Scholar

3. Uyar A, Torrealday S, Seli E. Cumulus and granulosa cell markers of oocyte and embryo quality. Fertil Steril. 2013;99(4):979-97; DOI:10.1016/j. fertnstert.2013.01.129.10.1016/j.fertnstert.2013.01.129Open DOISearch in Google Scholar

4. Jamnongjit M, Hammes SR. Oocyte maturation: the coming of age of a germ cell. Semin Reprod Med. 2005;23(3):234-41;;DOI:10.1055/s-2005-872451.10.1055/s-2005-872451Open DOISearch in Google Scholar

5. Yuan Y, Krisher RL. In vitro maturation (IVM) of porcine oocytes. Methods Mol Biol. 2012;825:183-98; DOI:10.1007/978-1-61779-436-0_14.10.1007/978-1-61779-436-0_14Open DOISearch in Google Scholar

6. Budna J, Celichowski P, Bryja A, Dyszkiewicz-Konwińska M, Jeseta M, Bukowska D, Antosik P, Brüssow KP, Bruska M, Nowicki M, Zabel M, Kempisty B. Significant down-regulation of „Biological Adhesion” genes in porcine oocytes after IVM. Int J Mol Sci. 2017;18(12). pii: E2685;DOI:10.3390/ijms18122685.10.3390/ijms18122685Open DOISearch in Google Scholar

7. Budna J, Bryja A, Celichowski P, Kranc W, Ciesiółka S, Borys S, Rybska M, Kolecka-Bednarczyk A, Jeseta M, Bukowska D, Antosik P, Brüssow KP, Bruska M, Nowicki M, Zabel M, Kempisty B. „Bone Development”an ontology group upregulated in porcine oocytes before in vitro maturation: a microarray approach. DNA Cell Biol. 2017;36(8):638-646; DOI:10.1089/dna.2017.3677.10.1089/dna.2017.3677Open DOISearch in Google Scholar

8. Lee H, Park WJ. Unsaturated fatty acids, desaturases, and human healt J Med Food. 2014;17(2):189-97; DOI:10.1089/jmf.2013.2917.10.1089/jmf.2013.2917Search in Google Scholar

9. Funari SS, Barcelo F, Escriba PV. Effect of oleic acid and its congeners, elaidic and stearic acids, on the structural properties of phosphatidylethanolamine members. J Lipid Res. 2003;44(3):567-75; DOI:10.1194jlr.M200356-JLR200.10.1194/jlr.M200356-JLR200Search in Google Scholar

10. Van Hoeck V, Sturmey RG, Bermejo-Alvarez P, Rizos D, Gutierrez-Adan A, Leese HJ, Bols PE, Leroy JL. Elevated non-esterified fatty acid concentrations during bovine oocyte maturation compromise early embryophysiology. PLoS One. 2011;6(8):e23183; DOI:10.1371/journal.pone.0023183.10.1371/journal.pone.0023183Search in Google Scholar

11. Roca J, Martinez E, Vazquez JM, Lucas X. Selection of immature pig oocytes for homologous in vitro penetration assays with the brilliant cresyl blue test. Reprod Fertil Dev. 1998;10(6):479-485; DOI:10.1071RD98060.10.1071/RD98060Search in Google Scholar

12. Dunning KR, Lane M, Brown HM, Yeo C, Robker RL, Russell DL. Altered composition of the cumulus-oocyte complex matrix during in vitro maturation of oocytes. Hum Reprod. 2007;22(11):2842-2850;DOI:10.1093/humrep/dem277.10.1093/humrep/dem277Open DOISearch in Google Scholar

13. Leroy JL, Vanholder T, Mateusen B, Christophe A, Opsomer G, de Kruif A, Genicot G, Van Soom A. Non-esterified fatty acids in follicular fluid of dairy cows and their effect on developmental capacity of bovine oocytes in vitro. Reproduction. 2005;130(4):485-495; DOI:10.1530/rep.1.00735.10.1530/rep.1.00735Open DOISearch in Google Scholar

14. Jungheim ES, Macones GA, Odem RR, Patterson BW, Lanzendorf SE, Ratts VS, Moley KH. Associations between free fatty acids, cumulus oocyte complex morphology and ovarian function during in vitro fertilization. Fertil Steril. 2011;95(6):1970-1974, DOI:10.1016/j.fertnstert.2011.01.154.10.1016/j.fertnstert.2011.01.154Open DOISearch in Google Scholar

15. Van Hoeck V, Sturmey RG, Bermejo-Alvarez P, Rizos D, Gutierrez-Adan A, Leese HJ, Bols PE, Leroy JL. Elevated non-esterified fatty acid concentrations during bovine oocyte maturation compromise early embryophysiology. PLoS One. 2011;6(8):e23183, DOI:10.1371/journal.pone.0023183.10.1371/journal.pone.0023183Open DOISearch in Google Scholar

16. Vanholder T, Leroy JL, Soom AV, Opsomer G, Maes D, Coryn M, de Kruif A.Effect of non-esterified fatty acids on bovine granulosa cell steroidogenesis and proliferation in vitro. Anim Reprod Sci. 2005;87(1-2):33-44;DOI:10.1016/j.anireprosci.2004.09.006.10.1016/j.anireprosci.2004.09.006Open DOISearch in Google Scholar

17. Lee Y, Lee H, Park B, Elahi F, Lee J, Lee ST, Park CK, Hyun SH, Lee E.Alpha-linolenic acid treatment during oocyte maturation enhance sembryonic development by influencing mitogen-activated protein kinase activity and intraoocyte glutathione content in pigs. J Anim Sci.2016;94(8):3255-3263; DOI:10.2527/jas.2016-0384.10.2527/jas.2016-0384Search in Google Scholar

18. Bayne RA, Eddie SL, Collins CS, Childs AJ, Jabbour HN, Anderson RA.Prostaglandin E2 as a regulator of germ cells during ovarian development.J Clin Endocrinol Metab. 2009;94(10):4053-60. DOI:10.1210/jc.2009-0755.10.1210/jc.2009-0755Search in Google Scholar

19. Hizaki H, Segi E, Sugimoto Y, Hirose M, Saji T, Ushikubi F, Matsuoka T, Noda Y, Tanaka T, Yoshida N, Narumiya S, Ichikawa A. Abortive expansion of the cumulus and impaired fertility in mice lacking the prostaglandin E receptor subtype EP2. 1998;96(18):10501-10506; DOI:10.1073/pnas.96.18.10501.10.1073/pnas.96.18.10501Open DOISearch in Google Scholar

20. Takahashi T, Morrow JD, Wang H, Dey SK. Cyclooxygenase-2-derived prostaglandin E(2) directs oocyte maturation by differentially influencing multiple signaling pathways. J Biol Chem. 2006;281(48):37117-37129; DOI:10.1074/jbc.M608202200.10.1074/jbc.608202200Open DOISearch in Google Scholar

21. Nuttinck F, Reinaud P, Tricoire H, Vigneron C, Peynot N, Mialot JP, Mermillod P, Charpigny G. Cyclooxygenase-2 is expressed by cumulus cells during oocyte maturation in cattle. Mol Reprod Dev. 2002;61(1):93-101; DOI:10.1002/mrd.1135.10.1002/mrd.1135Open DOISearch in Google Scholar

22. Stouffer RL, Xu F, Duffy DM. Molecular control of ovulation and luteinization in the primate follicle. Front Biosci. 2007;12:297-307;DOI:10.2741/2065.10.2741/2065Open DOISearch in Google Scholar

23. Nuttinck F, Marquant-Le Guienne B, Clément L, Reinaud P, Charpigny G, Grimard B. Expression of genes involved in prostaglandin E2 and progesterone production in bovine cumulus-oocyte complexes during in vitro maturation and fertilization. Reproduction. 2008;135(5):593-603; DOI:10.1530/REP-07-0453.10.1530/REP-07-0453Open DOISearch in Google Scholar

24. Suzuki H, Kanagawa H, Nishihira J. Evidence for the presence of macrophage migration inhibitory factor in murine reproductive organs and early embryos. Immunol Lett. 1996;51(3):141-7;DOI:10.1016/0165-2478(96)02543-6.10.1016/0165-2478(96)02543-6Open DOISearch in Google Scholar

25. Wada S, Fujimoto S, Mizue Y, Nishihira J. Macrophage migration inhibitory factor in the human ovary: presence in the follicular fluids and production by granulosa cells. Biochem Mol Biol Int. 1997;41(4):805-14; DOI:10.1095/biolreprod62.4.879.10.1095/biolreprod62.4.879Open DOISearch in Google Scholar

26. Wang HW, Fang JS, Kuang X, Miao LY, Wang C, Xia GL, King ML, Zhang J. Activity of long-chain acyl-CoA synthetase is required for maintaining meiotic arrest in Xenopus laevis. Biol Reprod. 2012;87(3):74;DOI:10.1095/biolreprod.112.100511.10.1095/biolreprod.112.100511Open DOISearch in Google Scholar

eISSN:
2544-3577
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Molekularbiologie, Biochemie