Uneingeschränkter Zugang

Bilberry Anthocyanins - Possible Applications in Skincare Products


Zitieren

Abdellatif AAH, Alawadh SH, Bouazzaoui A, Alhowail AH, Mohammed HA (2021) Anthocyanins rich pomegranate cream as a topical formulation with anti-aging activity. J Dermatol Treat, 32(8): 983–990. https://doi.org/10.1080/09546634.2020.1721418 Search in Google Scholar

Ahmed IA, Mikail MA, Zamakshshari N, Abdullah ASH (2020) Natural anti-aging skincare: Role and potential. Biogerontology, 21(3): 293–310. https://doi.org/10.1007/s10522-020-09865-z Search in Google Scholar

https://www.ema.europa.eu/en/documents/herbal-report/final-assessment-report-vaccinium-myrtillus-l-fructus-recensvaccinium-myrtillus-l-fructussiccus_en.pdf, accessed at 20.04.2023. Search in Google Scholar

Boon LK (2020) Generation Y’s Purchase Intention towards Natural Skincare Products: A PLS-SEM Analysis. J Bus Manag Res, 12(1): 61-77. Search in Google Scholar

Cai D, Li X, Chen J, Jiang X, Ma X, Sun J, Tian L, Vidyarthi SK, Xu J, Pan Z, Bai W (2022) A comprehensive review on innovative and advanced stabilization approaches of anthocyanin by modifying structure and controlling environmental factors. Food Chem, 366: 130611. https://doi.org/10.1016/j.foodchem.2021.130611 Search in Google Scholar

Choi MH, Shim SM, Kim GH (2016) Protective effect of black raspberry seed containing anthocyanins against oxidative damage to DNA, protein, and lipid. J Food Sci Tec, 53(2): 1214–1221. https://doi.org/10.1007/s13197-015-2094-7 Search in Google Scholar

Dossett M, Lee J, Finn C (2011) Anthocyanin Content of Wild Black Raspberry Germplasm. Acta Horticulturae, 946: 43–47. https://doi.org/10.17660/ActaHortic.2012.946.3 Search in Google Scholar

European Pharmacopoeia, Tenth edition (2019), Strasbourg, Council of Europe. Search in Google Scholar

Gaspar DP, Lechtenberg M, Hensel A (2021) Quality Assessment of Bilberry Fruits (Vaccinium myrtillus) and Bilberry- Containing Dietary Supplements. J Agri Food Chem, 69(7): 2213–2225. https://doi.org/10.1021/acs.jafc.0c07784 Search in Google Scholar

Govindaraghavan S (2014) Pharmacopeial HPLC identification methods are not sufficient to detect adulterations in commercial bilberry (Vaccinium myrtillus) extracts. Anthocyanin profile provides additional clues. Fitoterapia, 99: 124–138. https://doi.org/10.1016/j.fitote.2014.09.007 Search in Google Scholar

Gradinaru G, Biliaderis CG, Kallithraka S, Kefalas P, Garcia-Viguera C (2003) Thermal stability of Hibiscus sabdariffa L. anthocyanins in solution and in solid state: Effects of copigmentation and glass transition. Food Chem, 83(3): 423–436.https://doi.org/10.1016/S0308-8146(03)00125-0 Search in Google Scholar

Hăncianu M, Gîrd CE (2020) Farmacognozie. Produse vegetale cu substanțe bioactive (Stănescu U Ed.), Polirom. București. Search in Google Scholar

He J, Giusti MM (2010) Anthocyanins: Natural colorants with health-promoting properties. Annual Review of Food Science and Technology, 1: 163–187. https://doi.org/10.1146/annurev.food.080708.100754 Search in Google Scholar

Laczkó-Zöld E, Komlósi A, Ülkei T, Fogarasi E, Croitoru M, Fülöp I, Domokos E, Ştefănescu R, Varga E (2018) Extractability of polyphenols from black currant, red currant and gooseberry and their antioxidant activity. Acta Biol Hung, 69(2): 156–169. Search in Google Scholar

Lätti A., Riihinen KR, Kainulainen PS (2008) Analysis of Anthocyanin Variation in Wild Populations of Bilberry (Vaccinium myrtillus L.) in Finland. J Agri Food Chem, 56(1): 190–196. https://doi.org/10.1021/jf072857m Search in Google Scholar

Lee C, Na K (2020) Anthocyanin-Loaded Liposomes Prepared by the pH-Gradient Loading Method to Enhance the Anthocyanin Stability,Antioxidation Effect and Skin Permeability. Macromol Res, 28(3): 289–297. https://doi.org/10.1007/s13233-020-8039-7 Search in Google Scholar

Luca SV, Macovei I, Bujor A, Miron A, Skalicka-Woźniak K, Aprotosoaie AC, Trifan A (2020) Bioactivity of dietary polyphenols: The role of metabolites. Crit Rev Food Sci Nutr, 60(4):626–659. https://doi.org/10.1080/10408398.2018.1546669 Search in Google Scholar

Ma Y, Ma X, Gao X, Wu W, Zhou B (2021) Light Induced Regulation Pathway of Anthocyanin Biosynthesis in Plants. Int J Molec Sci, 22(20): 20. https://doi.org/10.3390/ijms222011116 Search in Google Scholar

Mattioli R, Francioso A, Mosca L, Silva P (2020) Anthocyanins: A Comprehensive Review of Their Chemical Properties and Health Effects on Cardiovascular and Neurodegenerative Diseases Molecules, 25(17): 17. https://doi.org/10.3390/molecules25173809 Search in Google Scholar

Mikulic-Petkovsek M, Schmitzer V, Slatnar A, Stampar F, Veberic R (2015) A comparison of fruit quality parameters of wild bilberry (Vaccinium myrtillus L.) growing at different locations. J Sci Food Agr, 95(4): 776–785. https://doi.org/10.1002/jsfa.6897 Search in Google Scholar

Neamtu AA, Szoke-Kovacs R, Mihok E, Georgescu C, Turcus V, Olah NK, Frum A, Tita O, Neamtu C, Szoke-Kovacs Z, Cziaky Z, Mathe E (2020) Bilberry (Vaccinium myrtillus L.) Extracts Comparative Analysis Regarding Their Phytonutrient Profiles, Antioxidant Capacity along with the In Vivo Rescue Effects Tested on a Drosophila melanogaster High-Sugar Diet Model. Antioxidants, 9(11): 1067. https://doi.org/10.3390/antiox9111067 Search in Google Scholar

Nisca A, Ștefănescu R, Stegăruș DI, Mare AD, Farczadi L, Tanase C (2021) Phytochemical Profile and Biological Effects of Spruce (Picea abies) Bark Subjected to Ultrasound Assisted and Microwave-Assisted Extractions. Plants, 10(5): 5. https://doi.org/10.3390/plants10050870 Search in Google Scholar

Nunes AR, Vieira ÍGP, Queiroz DB, Leal ALA, Maia Morais S, Muniz DF, Calixto-Junior J T, Coutinho HDM (2018) Use of Flavonoids and Cinnamates, the Main Photoprotectors with Natural Origin. Advances in Pharm and Pharm Sci, e5341487. https://doi.org/10.1155/2018/5341487 Search in Google Scholar

Saigo T, Wang T, Watanabe M, Tohge T (2020) Diversity of anthocyanin and proanthocyanin biosynthesis in land plants. Curr Opin Plant Biol, 55: 93–99. https://doi.org/10.1016/j.pbi.2020.04.001 Search in Google Scholar

Sarkar B, Kumar D, Sasmal D, Mukhopadhyay K (2014) Antioxidant and DNA damage protective properties of anthocyanin-rich extracts from Hibiscus and Ocimum: A comparative study. Nat Prod Res, 28(17): 1393–1398. https://doi.org/10.1080/14786419.2014.904309 Search in Google Scholar

Ştefănescu (Braic) R, Vari C, Imre S, Huţanu A, Fogarasi E, Todea T, Groşan A, Eşianu S, Laczkó-Zöld E, Dogaru M (2018) Vaccinium Extracts as Modulators in Experimental Type 1 Diabetes. J Med Food, 21(11):1106-1112. https://doi.org/10.1089/jmf.2017.0141 Search in Google Scholar

Ştefănescu RE, Eșianu S, Laczkó-Zöld E, Mare A, Tudor B, Dogaru MT (2017) Short period storage impact on bioactive constituents from bilberries and blueberries. Acta Marisiensis-Seria Medica, 63(2): 87–90. Search in Google Scholar

Tena N, Martín J, Asuero AG (2020) State of the Art of Anthocyanins: Antioxidant Activity, Sources, Bioavailability, and Therapeutic Effect in Human Health. Antioxidants, 9(5): 5. https://doi.org/10.3390/antiox9050451 Search in Google Scholar

Tsuda T (2012) Dietary anthocyanin-rich plants: Biochemical basis and recent progress in health benefits studies. Molec Nutr Food Res, 56(1): 159–170. https://doi.org/10.1002/mnfr.201100526 Search in Google Scholar

Wang W, Jung J, ZhaoY (2017) Chitosan-cellulose nanocrystal microencapsulation to improve encapsulation efficiency and stability of entrapped fruit anthocyanins. Carbohydrate Polymers, 157: 1246–1253. https://doi.org/10.1016/j.carbpol.2016.11.005 Search in Google Scholar

eISSN:
2668-5124
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Molekularbiologie, Biochemie, Botanik, Pharmazie, andere