Zitieren

1. Blobel G (2000) Protein targeting. Biosci Rep 20:303-344. doi: 10.1023/a:101031883260410.1023/A:1010318832604 Search in Google Scholar

2. Cecconi A, Vilchez-Tschischke JP, Mateo J, Sanchez Gonzalez J, España S, et al. (2021) Effects of colchicine on atherosclerotic plaque stabilization: a multimodality imaging study in an animal model. J Cardiovasc Transl Res 14(1):150-160. doi:10.1007/s12265-020-09974-710.1007/s12265-020-09974-7 Search in Google Scholar

3. Chaldakov GN and Nikolov SD (1975) Ultrastructure of the arterial smooth muscle cell. In: Wolf S, Werthessen NT, editors. The Smooth Muscle of the Artery. New York City, NY: Plenum Press. Adv Exp Med Biol 57:14-20. Search in Google Scholar

4. Chaldakov GN, Nikolov S, Vancov V (1977) Fine morphological aspects of the secretory process in arterial smooth muscle cells. II. Role of microtubules. Acta Morphol Acad Sci Hung 25:167-174. Search in Google Scholar

5. Chaldakov GN and Kádár A (1978) Microtubules in arterial smooth muscle cells in vivo and in tissue culture. An electron microscope study. In: W. Hauss, R. Wissler, R. Lehman, editors. State of Prevention and Therapy of Human Arteriosclerosis and in Animal Models. Rheinisch-Westfalische Akad. Der Wissenschaften, p. 211-231. Search in Google Scholar

6. Chaldakov G (2016) GEORGE E. PALADE LECTURE. Human body as a multicrine system, with special reference to cell protein secretion: from vascular smooth muscles to adipose tissue. Adipobiology 8:6-18. doi: 10.14748/adipo.v8.208910.14748/adipo.v8.2089 Search in Google Scholar

7. Chaldakov G, Stankulov I, Hristova M, Ghenev P (2003) Adipobiology of disease: Adipokines and adipokine-targeted pharmacology. Curr Pharm Des 9: 1023-1031. doi: 10.2174/138161203345515210.2174/1381612033455152 Search in Google Scholar

8. Chaldakov GN (1982) Antitubulins - a new therapeutic approach for atherosclerosis? Atherosclerosis 44:385-390. doi: 10.1016/0021-9150(82)90013-210.1016/0021-9150(82)90013-2 Search in Google Scholar

9. Chaldakov GN (2018) Colchicine, a microtubule-disassembling drug, in the therapy of cardiovascular diseases. Cell Biol Int 42:1079-1084. doi: 10.1002/cbin.1098810.1002/cbin.10988 Search in Google Scholar

10. Chaldakov GN, Beltowsky J, Ghenev PI, Fiore M, Panayotov P, Rančič G, Aloe L (2012) Adipoparacrinology - vascular periadventitial adipose tissue (tunica adiposa) as an example. Cell Biol Int 36:327-330. doi: 10.1042/cbi2011042210.1042/CBI20110422 Search in Google Scholar

11. Chaldakov GN and Fiore M (2010) Human body as a multicrine gland. Adipobiology 2: 73-75. doi: 10.14748/adipo.v2.26310.14748/adipo.v2.263 Search in Google Scholar

12. Chaldakov GN and Vankov VN (1986a) Morphological aspects of secretion in the arterial smooth muscle cell, with special reference to the golgi complex and microtubular cytoskeleton. Atherosclerosis 61: 175-192. doi: 10.1016/0021-9150(86)90137-110.1016/0021-9150(86)90137-1 Search in Google Scholar

13. Chaldakov GN and Vankov VN (1986b) Antifibrotic approach in the therapy of arterial occlusive diseases: new considerations. In: G. Trubestein, editor. Conservative Therapy of Arterial Occlusive Disease. Stuttgart, New York, Georg Thieme Verlag, p. 224-226 Search in Google Scholar

14. Chaldakov GN, Zhelyazkova-Savova MD, Panayotova D, Fiore M, Yanev S (2020) Phenotypic modulation of smooth muscle cells and matrix metalloproteinases as targets for atherosclerotic plaque stabilization. Biomed Rev 31: 49-60. doi: 10.14748/bmr.v31.770410.14748/bmr.v31.7704 Search in Google Scholar

15. Chaldakov GN (2021) Principles of Cell and Tissue Biology (in press). Search in Google Scholar

16. Farquhar MG (2012) A Man for all seasons: Reflections on the life and legacy of George Palade. Ann Rev Cell Dev Biol 28: 1-28. doi: 10.1146/annurev-cellbio-101011-15581310.1146/annurev-cellbio-101011-155813 Search in Google Scholar

17. Farquhar MG and Palade GE (1998) The Golgi apparatus: 100 years of progress and controversy. Trends Cell Biol 8:2-10. doi: 10.1016/S0962-8924(97)01187-210.1016/S0962-8924(97)01187-2 Search in Google Scholar

18. Frohlich J, Chaldakov GN, Vinciguerra M (2021) Cardio- and neurometabolic adipobiology: Consequences and implications for therapy. Int J Mol Sci 22: 4137. doi: 10.3390/ijms2208413710.3390/ijms22084137 Search in Google Scholar

19. Ghenev PI, Aloe L, Kisheva AR, Singh M, Panayotov P, Fiore M, et al. (2017) QUO VADIS, ATHEROGENESIS? Part 1. Smooth muscle cell secretion – how foe becomes friend in the fight against the atherosclerotic plaque. Biomed Rev 28:134-138.10.14748/bmr.v28.4460 Search in Google Scholar

20. Haust MD, More RH, Movat HZ (1960) The role of smooth muscle cells in the fibrogenesis of arteriosclerosis. Am J Pathol 37:377-389. Search in Google Scholar

21. Jena BP (2010) Porosome: the universal secretory portal in cells. Biomed Rev 21: 1-15. doi: 10.14748/bmr.v21.4210.14748/bmr.v21.42 Search in Google Scholar

22. Lai CP and Breakefield XO (2012) Role of exosomes/microvesicles in the nervous system and use in emerging therapies. Front Physiol 3: 228. doi: 10.3389/fphys.2012.0022810.3389/fphys.2012.00228 Search in Google Scholar

23. Lee JZ, Singh N, Howe CL, Low S-W, Huang JJ, Ortega G, et al. (2016) Colchicine for prevention of post-operative atrial fibrillation. A meta-analysis. J Am Coll Cardiol Clin Electrophyisol 2(1): 78-85. doi: https://doi.org/10.1016/j.jacep.2015.09.01610.1016/j.jacep.2015.09.016 Search in Google Scholar

24. Libby P (2021) Inflammation in atherosclerosis - No longer a theory. Clin Chem 67:131-142. doi:10.1093/clinchem/hvaa27510.1093/clinchem/hvaa275 Search in Google Scholar

25. Mazzarello P, Garbarino C, Calligaro A (2009) How Camillo Golgi became “the Golgi”. FEBS Lett 583: 3732-3737. doi: 10.1016/j.febslet.2009.10.01810.1016/j.febslet.2009.10.018 Search in Google Scholar

26. Mullen M, Jin XY, Child A, Stuart AG, Dodd M, Aragon-Martin JA, et al. (2019) Irbesartan in Marfan syndrome (AIMS): a double-blind, placebo-controlled randomised trial. Lancet 394: 2263–2270. doi: 10.1016/S0140-6736(19)32518-810.1016/S0140-6736(19)32518-8 Search in Google Scholar

27. Nickel W (2010) Pathways of unconventional protein secretion. Curr Opin Biotechnol 21: 621-626. doi: 10.1016/j.copbio.2010.06.00410.1016/j.copbio.2010.06.00420637599 Search in Google Scholar

28. Nidorf SM, Eikelboom JW, Budgeon CA, Thompson PL (2013) Low-dose colchicine for secondary prevention of cardiovascular disease. J Am Coll Cardiol 61(4):404-410. doi: 10.1016/j.jacc.2012.10.02 Search in Google Scholar

29. Palade G (1975) Intracellular aspects of the process of protein synthesis. Science 189: 347-358. doi: 10.1126/science.109630310.1126/science.10963031096303 Search in Google Scholar

30. Palade GE (1971) Albert Claude and the beginnings of biological electron microscopy. J Cell Biol 50: 5d-19d. doi: 10.1083/jcb.50.1.5d10.1083/jcb.50.1.5d Search in Google Scholar

31. Ross R (1999) Atherosclerosis - An inflammatory disease. N Engl J Med 340: 115-126. doi: 10.1056/nejm19990114340020710.1056/NEJM1999011434002079887164 Search in Google Scholar

32. Sadallah S, Eken C, Martin PJ, Schifferli JA (2011) Microparticles (ectosomes) shed by stored human platelets downregulate macrophages and modify the development of dendritic cells. J Immunol 186: 6543-6552. doi: 10.4049/jimmunol.100278810.4049/jimmunol.100278821525379 Search in Google Scholar

33. Shankman LS, Gomez D, Cherepanova OA, Salmon M, Alencar GF, Haskins RM, et al. (2015) KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat Med 21(6): 628-637. doi: 10.1038/nm.386610.1038/nm.3866455208525985364 Search in Google Scholar

34. Silver R and Pappas G (2005) Secretion without membrane fusion: Porocytosis. Anat Rec B New Anat 282: 18-37. doi: 10.1002/ar.b.2005010.1002/ar.b.2005015672353 Search in Google Scholar

35. Singer MV (2003) Legacy of a distinguished scientist: George E. Palade. Pancreatology 3:518–519. doi: 10.1159/00007632810.1159/00007632814730177 Search in Google Scholar

36. Tardif J-C, Kouz S, Waters DD, Bertrand OF, Diaz R, Maggioni AP, et al. (2019) Efficacy and safety of low-dose colchicine after myocardial infarction. N Engl J Med 381(26):2497-2505. doi: 10.1056/NEJMoa191238810.1056/NEJMoa191238831733140 Search in Google Scholar

37. Töre F, Tonchev A, Fiore M, Tunçel N, Atanassova P, Aloe L, et al. (2007) From adipose tissue protein secretion to adipopharmacology of disease. Immun Endoc Metab Agents Med Chem 7: 149-155. doi: 10.2174/18715220778036371210.2174/187152207780363712 Search in Google Scholar

38. Vaidya K, Arnott C, Martínez GJ, Ng B, McCormack S, Sullivan DR, et al. (2017) Colchicine therapy and plaque stabilization in patients with acute coronary syndrome. J Am Coll Cardiol Img. doi: https://doi.org/10.1016/j.jcmg.2017.08.01310.1016/j.jcmg.2017.08.01329055633 Search in Google Scholar

39. Wirka RC, Wagh DA, Paik DT, et al. (2019) Atheroprotective roles of smooth muscle cell phenotypic modulation and the TCF21 disease gene as revealed by single-cell analysis. Nat Med 25(8): doi:10.1038/s41591-019-0512-510.1038/s41591-019-0512-5727419831359001 Search in Google Scholar

40. Xiong W, Knispel RA, Dietz HC, Ramirez F, Baxter BT (2008) Doxycycline delays aneurysm rupture in a mouse model of Marfan syndrome. J Vasc Surg 47(1): 166-172. doi:10.1016/j.jvs.2007.09.01610.1016/j.jvs.2007.09.016414804618178469 Search in Google Scholar

41. Yanev S, Fiore M, Hinev A, Ghenev PI, Hristova MG, Panayotov P, et al. (2016) From antitubulins to trackins. Biomed Rev 27:59-67.10.14748/bmr.v27.2112 Search in Google Scholar

42. Zar M, Amadio P, Campodonico J, et al. (2020) Exosomes in cardiovascular diseases. Diagnostics 10:943. doi:10.3390/diagnostics1011094 Search in Google Scholar

eISSN:
2668-5124
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Molekularbiologie, Biochemie, Botanik, Pharmazie, andere