Uneingeschränkter Zugang

Yang-Laplace Decomposition Method for Nonlinear System of Local Fractional Partial Differential Equations


Zitieren

Introduction

Fractional partial differential equations is a fundamental tool for the analysis of physical phenomena, such as, electromagnetic, acoustics, viscoelasticity, electrochemistry, and others. These physical and other phenomena are expressed by fractional partial differential equations, which have been solved by several numerical-analytical methods ([13], [21], [25]). Among them, one of the most popular methods is the so-called Adomian decomposition method (ADM), which has been developed between the 1970s and 1990s by George Adomian ([1], [2], [3], [4], [5]).

With the new concepts of fractional derivative and fractional integral, as well as local fractional derivative and local fractional integral, researchers were able to use the ADM method to solve these new types of equations or systems which include, local fractional differential equations, local fractional partial differential equations and local fractional integro-differential equations ([6], [7], [8], [9], [10]).

Some more results were obtained by combining fractional differential operators with some known transforms, such as the Young-Laplace transform method and the Sumudu transform method, thus obtaining a solution of fractional equations or systems, even in the nonlinear case. Among these works we find the local fractional Laplace decomposition method [11] and the local fractional Sumudu decomposition method ([12], [14]). The theory and applications of local fractional derivative and integral operators, has been defined and deeply investigated by Xiao-Jun Yang (see e.g.[15], [16]).

Based on the concept of local fractional operator and on the Yang-Laplace decomposition method, Jassim has recently proposed a method [11] to solve linear local fractional partial differential equations. In this paper, we will generalize the Jassim method and extend it to solve nonlinear systems of local fractional partial differential equations. The Yang-Laplace decomposition will enable us to obtain exact solutions for nonlinear system of local fractional partial differential equations. Two examples are also given to show the effectiveness of this method.

This paper has been organized as follows: In Section 2 some basic definitions and properties of local fractional calculus and local fractional Yang-Laplace transform method are given. In section 3, we present an analysis of the modified method. In section 4 we apply the modified method (LFLDM) to nonlinear systems to obtain the analytical solution. Two applications are given in the same section.

Basic definitions

In this section, we will present the basic concepts of fractional local calculus, and in particular the local fractional derivative, local fractional integral, and local fractional Yang-Laplace transform.

Local fractional derivative
Definition 2.1

The local fractional derivative of Φ(ϰ) of order σ at ϰ = ϰ0 is defined as ([15], [16])

Φ(σ)(ϰ)=dσΦdϰσϰ=ϰ0=limϰϰ0Δσ(Φ(ϰ)Φ(ϰ0))(ϰϰ0)σ, $$\begin{array}{} \displaystyle \Phi ^{(\sigma )}(\varkappa )=\left. \frac{d^{\sigma }\Phi }{d\varkappa^{\sigma }}\right\vert _{\varkappa =\varkappa _{0}}=\lim_{\varkappa\rightarrow \varkappa_{0} }\frac{\Delta ^{\sigma}(\Phi (\varkappa )-\Phi (\varkappa _{0}))}{(\varkappa -\varkappa_{0})^{\sigma }}, \end{array}$$

where

Δσ(Φ(ϰ)Φ(ϰ0))Γ(1+σ)(Φ(ϰ)Φ(ϰ0)). $$\begin{array}{} \displaystyle \Delta ^{\sigma }(\Phi (\varkappa )-\Phi (\varkappa _{0}))\cong \Gamma(1+\sigma )\left[ (\Phi (\varkappa )-\Phi (\varkappa _{0}))\right] . \end{array}$$

This operator can be extended to the interval (α, β) so that for any ϰ ∈ (α, β), we can define

Φ(σ)(ϰ)=DϰσΦ(ϰ), $$\begin{array}{} \displaystyle \Phi ^{(\sigma )}(\varkappa )=D_{\varkappa }^{\sigma }\Phi (\varkappa ), \end{array}$$

denoted by

Φ(ϰ)Dϰσ(α,β). $$\begin{array}{} \displaystyle \Phi (\varkappa )\in D_{\varkappa }^{\sigma }(\alpha ,\beta ). \end{array}$$

For the local fractional derivative of high order

Φ(mσ)(ϰ)=Dϰ(σ)Dϰ(σ)Φ(ϰ),mtimes $$\begin{array}{} \displaystyle \Phi ^{(m\sigma )}(\varkappa )=\overset{m\text{ }times}{\overbrace{D_{\varkappa }^{(\sigma )}\cdots D_{\varkappa }^{(\sigma )}\Phi (\varkappa )},} \end{array}$$

and local fractional partial derivative of high order

mσΦ(ϰ,τ)ϰmσ=σϰσσϰσΦ(ϰ,τ).mtimes $$\begin{array}{} \displaystyle \frac{\partial ^{m\sigma }\Phi (\varkappa , \tau)}{\partial \varkappa ^{m\sigma }}=\overset{m\text{ }times}{\overbrace{\frac{\partial ^{\sigma }}{\partial \varkappa ^{\sigma }}\cdots \frac{\partial ^{\sigma }}{\partial \varkappa^{\sigma }}\Phi (\varkappa , \tau)}.} \end{array}$$

Local fractional integral
Definition 2.2

The local fractional integral of Φ(ϰ) of order σ in the interval [α, β] is defined as ([15], [16])

αIβ(σ)Φ(ϰ)=1Γ(1+σ)αβΦ(τ)(dτ)σ=1Γ(1+σ)limΔτ0j=0N1f(τj)(Δτj)σ, $$\begin{array}{} \begin{split} \displaystyle _{\alpha }I_{\beta }^{(\sigma )}\Phi (\varkappa ) &=&\frac{1}{\Gamma(1+\sigma )}\int_{\alpha }^{\beta }\Phi (\tau )(d\tau )^{\sigma } \notag \\ &=&\frac{1}{\Gamma (1+\sigma )}\lim_{\Delta \tau \longrightarrow 0}\sum_{j=0}^{N-1}f(\tau _{j})(\Delta \tau _{j})^{\sigma }, \end{split} \end{array}$$

where Δτj = τj+1τj, Δτ = max{Δτ0, Δτ1, Δτ2, ⋯} and [τj, τj+1], τ0 = α, τN = β, is a partition of the interval [α, β].

For any ϰ ∈ (α, β), there exists

αIϰ(σ)Φ(ϰ), $$\begin{array}{} \displaystyle _{\alpha }I_{\varkappa }^{(\sigma )}\Phi (\varkappa ), \end{array}$$

denoted by

Φ(ϰ)Iϰ(σ)(α,β). $$\begin{array}{} \displaystyle \Phi (\varkappa )\in I_{\varkappa }^{(\sigma )}(\alpha ,\beta ). \end{array}$$

Some properties of the local fractional operators

The local fractional operators fulfill some fundamental equations. In particular, starting from the Mittag-Leffler function we have the following

Definition 2.3

The Mittag-Leffler function, the hyperbolic sine and hyperbolic cosine are defined as ([15], [16], [17])

Eσ(ϰσ)=m=0+ϰmσΓ(1+mσ),0<σ1, $$\begin{array}{} \displaystyle E_{\sigma }(\varkappa ^{\sigma })=\sum_{m=0}^{+\infty }\frac{\varkappa ^{m\sigma }}{\Gamma (1+m\sigma )},{ \, \, }0 \lt \sigma \leqslant 1, \end{array}$$

Eσ(ϰσ)Eσ(υσ)=Eσ(ϰ+υ)σ,0<σ1, $$\begin{array}{} \displaystyle E_{\sigma }(\varkappa ^{\sigma })E_{\sigma }(\upsilon ^{\sigma })=E_{\sigma}(\varkappa +\upsilon )^{\sigma },{ \, \, }0 \lt \sigma \leqslant 1, \end{array}$$

Eσ(ϰσ)Eσ(υσ)=Eσ(ϰυ)σ,0<σ1, $$\begin{array}{} \displaystyle E_{\sigma }(\varkappa ^{\sigma })E_{\sigma }(-\upsilon ^{\sigma })=E_{\sigma}(\varkappa -\upsilon )^{\sigma },{ \, \, }0 \lt \sigma \leqslant 1, \end{array}$$

sinσ(ϰσ)=m=0+(1)mϰ(2m+1)σΓ(1+(2m+1)σ),0<σ1, $$\begin{array}{} \displaystyle \sin _{\sigma }(\varkappa ^{\sigma })=\sum_{m=0}^{+\infty }(-1)^{m}\frac{\varkappa ^{(2m+1)\sigma }}{\Gamma (1+(2m+1)\sigma )},{ \, \, }0 \lt \sigma \leqslant 1, \end{array}$$

cosσ(ϰσ)=m=0+(1)mϰ2mσΓ(1+2mσ),0<σ1. $$\begin{array}{} \displaystyle \cos _{\sigma }(\varkappa ^{\sigma })=\sum_{m=0}^{+\infty }(-1)^{m}\frac{\varkappa ^{2m\sigma }}{\Gamma (1+2m\sigma )},{ \, \, }0 \lt \sigma \leqslant 1. \end{array}$$

By using the local fractional derivative (1) and the definitions (2.3) it can be easily shown that ([15], [16])

dσϰmσdϰσ=Γ(1+mσ)ϰ(m1)σΓ(1+(m1)σ). $$\begin{array}{} \displaystyle \frac{d^{\sigma }\varkappa ^{m\sigma }}{d\varkappa ^{\sigma }}=\frac{\Gamma (1+m\sigma )\varkappa ^{(m-1)\sigma }}{\Gamma (1+(m-1)\sigma )}. \end{array}$$

dσdϰσEσ(ϰσ)=Eσ(ϰσ). $$\begin{array}{} \displaystyle \frac{d^{\sigma }}{d\varkappa ^{\sigma }}E_{\sigma }(\varkappa ^{\sigma})=E_{\sigma }(\varkappa ^{\sigma }). \end{array}$$

dσdϰσsinσ(ϰσ)=cosσ(ϰσ). $$\begin{array}{} \displaystyle \frac{d^{\sigma }}{d\varkappa ^{\sigma }}\sin _{\sigma }(\varkappa ^{\sigma})=\cos _{\sigma }(\varkappa ^{\sigma }). \end{array}$$

dσdϰσcosσ(ϰσ)=sinσ(ϰσ). $$\begin{array}{} \displaystyle \frac{d^{\sigma }}{d\varkappa ^{\sigma }}\cos _{\sigma }(\varkappa ^{\sigma})=-\sin _{\sigma }(\varkappa ^{\sigma }). \end{array}$$

0Iϰ(σ)ϰmσΓ(1+mσ)=ϰ(m+1)σΓ(1+(m+1)σ). $$\begin{array}{} \displaystyle _{0}I_{\varkappa }^{(\sigma )}\frac{\varkappa ^{m\sigma }}{\Gamma (1+m\sigma)}=\frac{\varkappa ^{(m+1)\sigma }}{\Gamma (1+(m+1)\sigma )}. \end{array}$$

Local fractional Yang-Laplace transform

We present here the definition of local fractional Yang-Laplace transform (denoted in this paper by LFLσ[.]) and some properties concerning this transformation.

Definition 2.4

Let

1Γ(1+σ)0w(ϰ,τ)dτσ<k<, $$\begin{array}{} \displaystyle \frac{1}{\Gamma (1+\sigma )}\int_{0}^{\infty }\left\vert w(\varkappa ,\tau )\right\vert \left( d\tau \right) ^{\sigma } \lt k \lt \infty \qquad , \end{array}$$

the Yang-Laplace transform of w(ϰ, τ) is defined as ([18], [19], [20]):

LFLσw(ϰ,τ)=W(ϰ,s):=1Γ(1+σ)0Eσ(sστσ)w(ϰ,τ)(dτ)σ;0<σ1, $$\begin{array}{} \displaystyle ^{LF}L_{\sigma }\left\{ w(\varkappa ,\tau )\right\} =\ W(\varkappa ,s):=\frac{1}{\Gamma (1+\sigma )}\int_{0}^{\infty }E_{\sigma }(-s^{\sigma }\tau^{\sigma })w(\varkappa ,\tau )(d\tau )^{\sigma };\ 0 \lt \sigma \leqslant 1, \end{array}$$

where the integral converges and s ∈ ℝ.

Definition 2.5

The inverse Yang-Laplace transforms of W(ϰ, τ) is defined as [19]:

LFLσ1W(ϰ,s)=w(ϰ,τ):=1(2π)σβiβ+iEσ(sστσ)W(x,s)(ds)σ;0<σ1, $$\begin{array}{} \displaystyle ^{LF}L_{\sigma }^{-1}\left\{ W(\varkappa ,s)\right\} =\, w(\varkappa ,\tau ):=\frac{1}{(2\pi )^{\sigma }}\int_{\beta -i\infty }^{\beta +i\infty}E_{\sigma }(s^{\sigma }\tau ^{\sigma })W(x,s)(ds)^{\sigma };\, 0 \lt \sigma\leqslant 1, \end{array}$$

where sσ = βσ + iσσ, (Re(s) = β > 0) and iσ is the fractal imaginary unit.

The Yang-Laplace transform is a linear operator ([18], [20])

LFLσaf(ϰ)+bg(ϰ)=aLFLσ(f(ϰ))+bLFLσ(g(ϰ)), $$\begin{array}{} \displaystyle ^{LF}L_{\sigma }\left\{ af(\varkappa )+bg(\varkappa )\right\} =a^{LF}L_{\sigma}(f(\varkappa ))+b^{LF}L_{\sigma }(g(\varkappa )), \end{array}$$

moreover the following properties hold ([18], [20])

LFLσfnσ(ϰ)=snσLFLσf(ϰ)k=1ns(k1)σf(0)f((nk)σ)(0), $$\begin{array}{} \displaystyle ^{LF}L_{\sigma }\left\{ f^{\left( n\sigma \right) }(\varkappa )\right\}=s^{n\sigma }{\, }^{LF}L_{\sigma }\left\{ f(\varkappa )\right\}-\sum_{k=1}^{n}s^{(k-1)\sigma }f(0)-f^{((n-k)\sigma )}(0), \end{array}$$

limx0f(ϰ)=limσsσF(s), $$\begin{array}{} \displaystyle \lim_{x\longrightarrow 0}f(\varkappa )=\lim_{\sigma \longrightarrow \infty}s^{\sigma }F(s), \end{array}$$

limxf(ϰ)=limσ0sσF(s), $$\begin{array}{} \displaystyle \lim_{x\longrightarrow \infty }f(\varkappa )=\lim_{\sigma \longrightarrow0}s^{\sigma }F(s), \end{array}$$

LFLσϰkσEσ(aσϰσ)=(Γ(1+kσ)(sa)(k+1)σ, $$\begin{array}{} \displaystyle ^{LF}L_{\sigma }\left\{ \varkappa ^{k\sigma }E_{\sigma }(a^{\sigma }\varkappa^{\sigma })\right\} =(\frac{\Gamma (1+k\sigma )}{(s-a)^{(k+1)\sigma }}, \end{array}$$

LFLσsinσ(aσϰσ)=aσs2σ+a2σ, $$\begin{array}{} \displaystyle ^{LF}L_{\sigma }\left\{ \sin _{\sigma }(a^{\sigma }\varkappa ^{\sigma})\right\} =\, \frac{a^{\sigma }}{s^{2\sigma }+a^{2\sigma }}, \end{array}$$

LFLσcosσ(aσϰσ)=sσs2σ+a2σ, $$\begin{array}{} \displaystyle ^{LF}L_{\sigma }\left\{ \cos _{\sigma }(a^{\sigma }\varkappa ^{\sigma})\right\} =\ \frac{s^{\sigma }}{s^{2\sigma }+a^{2\sigma }}, \end{array}$$

LFLσϰkσ=Γ(1+kσ)s(k+1)σ. $$\begin{array}{} \displaystyle ^{LF}L_{\sigma }\left\{ \varkappa ^{k\sigma }\right\} =\, \frac{\Gamma(1+k\sigma )}{s^{(k+1)\sigma }}. \end{array}$$

Solution of a nonlinear fractional order differential system

Let us consider a general nonlinear system with local fractional derivative:

σXτσ+σTϰσ+Nσ,1(X,T)+Rσ,1(X,T)=φ(ϰ,τ),σTτσ+σXϰσ+Nσ,2(X,T)+Rσ,2(X,T)=ψ(ϰ,τ), $$\begin{array}{} \ \left\{ \begin{array}{c} \frac{\partial ^{\sigma }X}{\partial \tau ^{\sigma }}+\frac{\partial^{\sigma }T}{\partial \varkappa ^{\sigma }}+N_{\sigma ,1}(X,T)+R_{\sigma,1}(X,T)=\varphi (\varkappa ,\tau ), \\[0.1cm] \frac{\partial ^{\sigma }T}{\partial \tau ^{\sigma }}+\frac{\partial^{\sigma }X}{\partial \varkappa ^{\sigma }}+N_{\sigma ,2}(X,T)+R_{\sigma,2}(X,T)=\psi (\varkappa ,\tau ), \end{array} \right. \end{array}$$

where σσ $\begin{array}{} \displaystyle \frac{\partial ^{\sigma }}{\partial \left( \cdot \right) ^{\sigma }} \end{array}$ denotes linear local fractional derivative operator of order σ, Rσ,1, Rσ,2 are the linear local fractional operators, Nσ,1, Nσ,2 represent the nonlinear local fractional operators, and φ(ϰ, τ), ψ(ϰ, τ) are two given functions.

We will search an analytical solution of this system by the following steps.

First we apply the local Yang-Laplace transform to both sides of each equation in system (26), so that:

LFLσσXτσ+LFLσσTϰσ+LFLσNσ,1(X,T)+LFLσRσ,1(X,T)=LFLσφ(ϰ,τ)LFLσσTτσ+LFLσσXϰσ+LFLσNσ,2(X,T)+LFLσRσ,2(X,T)=LFLσψ(ϰ,τ). $$\begin{array}{} \displaystyle \left\{ \begin{array}{c} ^{LF}L_{\sigma }\left[ \frac{\partial ^{\sigma }X}{\partial \tau ^{\sigma }}\right] +\text{ }^{LF}L_{\sigma }\left[ \frac{\partial ^{\sigma }T}{\partial \varkappa ^{\sigma }}\right] +^{LF}L_{\sigma }\left[ N_{\sigma ,1}(X,T)\right] +^{LF}L_{\sigma }\left[ R_{\sigma ,1}(X,T)\right] =\text{ }^{LF}L_{\sigma }\left[ \varphi (\varkappa ,\tau )\right] \\[0.1cm] ^{LF}L_{\sigma }\left[ \frac{\partial ^{\sigma }T}{\partial \tau ^{\sigma }}\right] +\text{ }^{LF}L_{\sigma }\left[ \frac{\partial ^{\sigma }X}{\partial \varkappa ^{\sigma }}\right] +^{LF}L_{\sigma }\left[ N_{\sigma ,2}(X,T)\right] +^{LF}L_{\sigma }\left[ R_{\sigma ,2}(X,T)\right] =\text{ }^{LF}L_{\sigma }\left[ \psi (\varkappa ,\tau )\right] \end{array} \right. . \end{array}$$

According to the properties of this transform, we have:

LFLσX=X(ϰ,0)+sσLFLσφ(ϰ,τ)sσLFLσσTϰσ+Nσ,1(X,T)+Rσ,1(X,T)LFLσT=T(ϰ,0)+sσLFLσψ(ϰ,τ)sσLFLσσXϰσ+Nσ,2(X,T)+Rσ,2(X,T). $$\begin{array}{} \displaystyle \left\{ \begin{array}{c} ^{LF}L_{\sigma }\left[ X\right] =X(\varkappa ,0)+s^{-\sigma }\left( ^{LF}L_{\sigma}\left[ \varphi (\varkappa ,\tau )\right] \right) -s^{-\sigma }\left(LFL_{\sigma }\left[ \frac{\partial ^{\sigma }T}{\partial \varkappa ^{\sigma }}+N_{\sigma ,1}(X,T)+R_{\sigma ,1}(X,T)\right] \right) \\[0.1cm] ^{LF}L_{\sigma }\left[ T\right] =T(\varkappa ,0)+s^{-\sigma }\left( ^{LF}L_{\sigma}\left[ \psi (\varkappa ,\tau )\right] \right) -s^{-\sigma }\left( ^{LF}L_{\sigma }\left[ \frac{\partial ^{\sigma }X}{\partial \varkappa ^{\sigma }}+N_{\sigma ,2}(X,T)+R_{\sigma ,2}(X,T)\right] \right) \end{array} \right. . \end{array}$$

By taking the inverse transformation on both sides of each system equation (28), there follows:

X=X(ϰ,0)+LFLσ1sσLFLσφ(ϰ,τ)LFLσ1sσLFLσσTϰσ+Nσ,1(X,T)+Rσ,1(X,T)T=T(ϰ,0)+LFLσ1sσLFLσψ(ϰ,τ)LFLσ1sσLFLσσXϰσ+Nσ,2(X,T)+Rσ,2(X,T). $$\begin{array}{} \displaystyle \left\{ \begin{array}{c} X=X(\varkappa ,0)+^{LF}L_{\sigma }^{-1}\left( s^{-\sigma }\left( ^{LF}L_{\sigma } \left[ \varphi (\varkappa ,\tau )\right] \right) \right) -^{LF}L_{\sigma}^{-1}\left( s^{-\sigma }\left( ^{LF}L_{\sigma }\left[ \frac{\partial ^{\sigma}T}{\partial \varkappa ^{\sigma }}+N_{\sigma ,1}(X,T)+R_{\sigma ,1}(X,T)\right] \right) \right) \\[0.1cm] T=T(\varkappa ,0)+^{LF}L_{\sigma }^{-1}\left( s^{-\sigma }\left( ^{LF}L_{\sigma } \left[ \psi (\varkappa ,\tau )\right] \right) \right) -^{LF}L_{\sigma}^{-1}\left( s^{-\sigma }\left( ^{LF}L_{\sigma }\left[ \frac{\partial ^{\sigma}X}{\partial \varkappa ^{\sigma }}+N_{\sigma ,2}(X,T)+R_{\sigma ,2}(X,T)\right] \right) \right) \end{array} \right. . \end{array}$$

By using the Adomian decomposition method [1], we represent the two unknown functions X and T as infinite series:

X(ϰ,τ)=n=0Xn(ϰ,τ),T(ϰ,τ)=n=0Tn(ϰ,τ). $$\begin{array}{} X(\varkappa ,\tau )=\sum_{n=0}^{\infty }X_{n}(\varkappa ,\tau ), \\[0.2cm] T(\varkappa ,\tau )=\sum_{n=0}^{\infty }T_{n}(\varkappa ,\tau ). \end{array}$$

moreover, the nonlinear terms can be decomposed as:

Nσ,1(X,T)=n=0An,Nσ,2(X,T)=n=0Bn, $$\begin{array}{} N_{\sigma ,1}(X,T)=\sum_{n=0}^{\infty }A_{n}, \\[0.1cm] N_{\sigma ,2}(X,T)=\sum_{n=0}^{\infty }B_{n}, \end{array}$$

where An and Bn are Adomian polynomials [22].

Substituting (30) and (31) in (29), we get:

n=0Xn(ϰ,τ)=X(ϰ,0)+LFLσ1sσLFLσφ(ϰ,τ)LFLσ1sσLFLσσϰσn=0Tn+n=0An+R1,σn=0Xn,n=0Tn,n=0Tn(ϰ,τ)=T(ϰ,0)+LFLσ1sσLFLσψ(ϰ,τ)LFLσ1sσLFLσσϰσn=0Xn+n=0Bn+R2,σn=0Xn,n=0Tn. $$\begin{array}{} \left\{ \begin{array}{c} \sum_{n=0}^{\infty }X_{n}(\varkappa ,\tau )=X(\varkappa,0)+^{LF}L_{\sigma }^{-1}\left( s^{-\sigma }\left( ^{LF}L_{\sigma }\left[ \varphi(\varkappa ,\tau )\right] \right) \right) \\[0.2cm] -^{LF}L_{\sigma }^{-1}\left( s^{-\sigma }\left( ^{LF}L_{\sigma }\left[ \frac{\partial ^{\sigma }}{\partial \varkappa ^{\sigma }}\left(\sum_{n=0}^{\infty }T_{n}\right) +\sum_{n=0}^{\infty}A_{n}+R_{1,\sigma }\left( \sum_{n=0}^{\infty}X_{n},\sum_{n=0}^{\infty }T_{n}\right) \right] \right) \right) , \\[0.2cm] \sum_{n=0}^{\infty }T_{n}(\varkappa ,\tau )=T(\varkappa,0)+^{LF}L_{\sigma }^{-1}\left( s^{-\sigma }\left( ^{LF}L_{\sigma }\left[ \psi(\varkappa ,\tau )\right] \right) \right) \\[0.2cm] -^{LF}L_{\sigma }^{-1}\left( s^{-\sigma }\left( ^{LF}L_{\sigma }\left[ \frac{\partial ^{\sigma }}{\partial \varkappa ^{\sigma }}\left(\sum_{n=0}^{\infty }X_{n}\right) +\sum_{n=0}^{\infty}B_{n}+R_{2,\sigma }\left( \sum_{n=0}^{\infty}X_{n},\sum_{n=0}^{\infty }T_{n}\right) \right] \right) \right). \end{array} \right. \end{array}$$

By comparing both sides of (32a), we have:

X0(ϰ,τ)=X(ϰ,0)+LFLσ1sσLFLσφ(ϰ,τ),X1(ϰ,τ)=LFLσ1sσLFLσσT0ϰσ+A0+R1,σX0,T0,X2(ϰ,τ)=LFLσ1sσLFLσσT1ϰσ+A1+R1,σX1,T1,X3(ϰ,τ)=LFLσ1sσLFLσσT2ϰσ+A2+R1,σX2,T2, $$\begin{array}{} \displaystyle \left[ \begin{array}{c} X_{0}(\varkappa ,\tau )=X(\varkappa ,0)+\text{ }LFL_{\sigma }^{-1}\left(s^{-\sigma }\left( ^{LF}L_{\sigma }\left[ \varphi (\varkappa ,\tau )\right]\right) \right) , \\[0.1cm] X_{1}(\varkappa ,\tau )=-^{LF}L_{\sigma }^{-1}\left( s^{-\sigma }\left(^{LF}L_{\sigma }\left[ \frac{\partial ^{\sigma }T_{0}}{\partial \varkappa^{\sigma }}+A_{0}+R_{1,\sigma }\left( X_{0},T_{0}\right) \right] \right)\right) , \\[0.1cm] X_{2}(\varkappa ,\tau )=-\text{ }^{LF}L_{\sigma }^{-1}\left( s^{-\sigma }\left(^{LF}L_{\sigma }\left[ \frac{\partial ^{\sigma }T_{1}}{\partial \varkappa^{\sigma }}+A_{1}+R_{1,\sigma }\left( X_{1},T_{1}\right) \right] \right)\right) , \\[0.1cm] X_{3}(\varkappa ,\tau )=-\text{ }^{LF}L_{\sigma }^{-1}\left( s^{-\sigma }\left(^{LF}L_{\sigma }\left[ \frac{\partial ^{\sigma }T_{2}}{\partial \varkappa^{\sigma }}+A_{2}+R_{1,\sigma }\left( X_{2},T_{2}\right) \right] \right)\right) , \\ \vdots \end{array} \right] \end{array}$$

and

T0(ϰ,τ)=T(ϰ,0)+LFLσ1sσLFLσψ(ϰ,τ),T1(ϰ,τ)=LFLσ1sσLFLσσX0ϰσ+B0+R2,σX0,T0,T2(ϰ,τ)=LFLσ1sσLFLσσX1ϰσ+B1+R2,σX1,T1,T3(ϰ,τ)=LFLσ1sσLFLσσX2ϰσ+B2+R2,σX2,T2, $$\begin{array}{} \left[ \begin{array}{c} T_{0}(\varkappa ,\tau )=T(\varkappa ,0)+^{LF}L_{\sigma }^{-1}\left( s^{-\sigma}\left(^{LF}L_{\sigma }\left[ \psi (\varkappa ,\tau )\right] \right) \right) , \\[0.1cm] T_{1}(\varkappa ,\tau )=-\text{ }^{LF}L_{\sigma }^{-1}\left( s^{-\sigma }\left(^{LF}L_{\sigma }\left[ \frac{\partial ^{\sigma }X_{0}}{\partial \varkappa ^{\sigma }}+B_{0}+R_{2,\sigma }\left( X_{0},T_{0}\right) \right] \right)\right) , \\[0.1cm] T_{2}(\varkappa ,\tau )=-\text{ }^{LF}L_{\sigma }^{-1}\left( s^{-\sigma }\left(^{LF}L_{\sigma }\left[ \frac{\partial ^{\sigma }X_{1}}{\partial \varkappa^{\sigma }}+B_{1}+R_{2,\sigma }\left( X_{1},T_{1}\right) \right] \right)\right) , \\[0.1cm] T_{3}(\varkappa ,\tau )=-\text{ }^{LF}L_{\sigma }^{-1}\left( s^{-\sigma }\left(^{LF}L_{\sigma }\left[ \frac{\partial ^{\sigma }X_{2}}{\partial \varkappa^{\sigma }}+B_{2}+R_{2,\sigma }\left( X_{2},T_{2}\right) \right] \right)\right) , \\ \vdots \end{array} \right] \end{array}$$

At the last step, we get the solution by a limit of the analytical solution (X, T) of the system (26):

X(ϰ,τ)=limNn=0NXn(ϰ,τ)T(ϰ,τ)=limNn=0NTn(ϰ,τ). $$\begin{array}{} \left\{ \begin{array}{c} X(\varkappa ,\tau )=\lim_{N\rightarrow \infty}\sum_{n=0}^{N}X_{n}(\varkappa ,\tau ) \\[0.1cm] T(\varkappa ,\tau )=\lim_{N\rightarrow \infty}\sum_{n=0}^{N}T_{n}(\varkappa ,\tau ) \end{array} \right. . \end{array}$$

Applications

In this section, we will implement the proposed method based on local fractional Yang-Laplace decomposition method (LFLDM) [11] and Adomian decomposition for solving two nonlinear systems of local fractional partial differential equations.

Example 4.1

Consider the following coupled nonlinear system of local fractional Burger equations

σXτσ2σXϰ2σ2XXϰσ+XTϰσ=0σTτσ2σTϰ2σ2TTϰσ+XTϰσ=0,0<σ1, $$\begin{array}{} \left\{ \begin{array}{c} \frac{\partial ^{\sigma }X}{\partial \tau ^{\sigma }}\ -\frac{\partial^{2\sigma }X}{\partial \varkappa ^{2\sigma }}-2XX_{\varkappa }^{\left(\sigma \right) }+\left( XT\right) _{\varkappa }^{\left( \sigma \right) }=0 \\[0.1cm] \frac{\partial ^{\sigma }T}{\partial \tau ^{\sigma }}\ -\frac{\partial^{2\sigma }T}{\partial \varkappa ^{2\sigma }}-2TT_{\varkappa }^{\left( \sigma \right) }+\left( XT\right) _{\varkappa }^{\left( \sigma \right) }=0 \end{array} \right. ,\text{ }0 \lt \sigma \leqslant 1, \end{array}$$

under the initial conditions:

X(ϰ,0)=sinσ(ϰσ),T(ϰ,0)=sinσ(ϰσ). $$\begin{array}{} \displaystyle X(\varkappa ,0)=\sin _{\sigma }(\varkappa ^{\sigma }),\text{ }T(\varkappa,0)=\sin _{\sigma }(\varkappa ^{\sigma }). \end{array}$$

From the equation (29), we obtain:

X(ϰ,τ)=sinσ(ϰσ)LFLσ1sσLFLσ2σTϰ2σ2XXϰσ+XTϰσT(ϰ,τ)=sinσ(ϰσ)LFLσ1sσLFLσ2σXϰ2σ2TTϰσ+XTϰσ. $$\begin{array}{} \left\{ \begin{array}{c} X(\varkappa ,\tau )=\sin _{\sigma }(\varkappa ^{\sigma })-^{LF}L_{\sigma}^{-1}\left( s^{-\sigma }\left( ^{LF}L_{\sigma }\left[ -\frac{\partial^{2\sigma }T}{\partial \varkappa ^{2\sigma }}-2XX_{\varkappa }^{\left(\sigma \right) }+\left( XT\right) _{\varkappa }^{\left( \sigma \right) }\right] \right) \right) \\[0.1cm] T(\varkappa ,\tau )=\sin _{\sigma }(\varkappa ^{\sigma })-^{LF}L_{\sigma}^{-1}\left( s^{-\sigma }\left( ^{LF}L_{\sigma }\left[ -\frac{\partial^{2\sigma }X}{\partial \varkappa ^{2\sigma }}-2TT_{\varkappa }^{\left(\sigma \right) }+\left( XT\right) _{\varkappa }^{\left( \sigma \right) }\right] \right) \right) \end{array} \right. . \end{array}$$

So that by using the Adomian decomposition [1], each function of the solution (X, T) can be decomposed as infinite series:

X(ϰ,τ)=n=0Xn(ϰ,τ),T(ϰ,τ)=n=0Tn(ϰ,τ), $$\begin{array}{} \displaystyle X(\varkappa ,\tau )=\sum_{n=0}^{\infty }X_{n}(\varkappa ,\tau ), \\ \displaystyle T(\varkappa ,\tau )=\sum_{n=0}^{\infty }T_{n}(\varkappa ,\tau ), \end{array}$$

and the nonlinear terms can be decomposed as:

XXϰ(σ)=n=0An(X), $$\begin{array}{} \displaystyle XX_{\varkappa }^{(\sigma )}=\sum_{n=0}^{\infty }A_{n}(X), \end{array}$$

(XT)ϰσ=n=0Bn(X,T), $$\begin{array}{} \displaystyle (XT)_{\varkappa }^{\left( \sigma \right) }=\sum_{n=0}^{\infty}B_{n}(X,T), \end{array}$$

and

TTϰ(σ)=n=0Cn(X). $$\begin{array}{} \displaystyle TT_{\varkappa }^{(\sigma )}=\sum_{n=0}^{\infty }C_{n}(X). \end{array}$$

Substituting (39), (40), (41) and (42) in (38), we get:

n=0Xn(ϰ,τ)=sinσ(ϰσ)LFLσ1sσLFLσ2σϰ2σn=0Xn(ϰ,τ)2n=0An(X)+n=0Bn(X,T)n=0Tn(ϰ,τ)=sinσ(ϰσ)LFLσ1sσLFLσ2σϰ2σn=0Tn(ϰ,τ)2n=0Cn(X)+n=0Bn(X,T). $$\begin{array}{} \left\{ \begin{array}{c} \sum_{n=0}^{\infty }X_{n}(\varkappa ,\tau )=\sin _{\sigma}(\varkappa ^{\sigma })-^{LF}L_{\sigma }^{-1}\left( s^{-\sigma }\left( ^{LF}L_{\sigma }\left[ \begin{array}{c} -\frac{\partial ^{2\sigma }}{\partial \varkappa ^{2\sigma }}\left(\sum_{n=0}^{\infty }X_{n}(\varkappa ,\tau )\right) \\[0.1cm] -2\sum_{n=0}^{\infty }A_{n}(X)+\sum_{n=0}^{\infty }B_{n}(X,T) \end{array} \right] \right) \right) \\[0.1cm] \sum_{n=0}^{\infty }T_{n}(\varkappa ,\tau )=\sin _{\sigma}(\varkappa ^{\sigma })-^{LF}L_{\sigma }^{-1}\left( s^{-\sigma }\left(^{LF}L_{\sigma }\left[ \begin{array}{c} -\frac{\partial ^{2\sigma }}{\partial \varkappa ^{2\sigma }}\left(\sum_{n=0}^{\infty }T_{n}(\varkappa ,\tau )\right) \\[0.0cm] -2\sum_{n=0}^{\infty }C_{n}(X)+\sum_{n=0}^{\infty }B_{n}(X,T) \end{array} \right] \right) \right) \end{array} \right. . \end{array}$$

By comparing both sides of (43), it is:

X0(ϰ,υ,τ)=Eσ(ϰσ+υσ),X1(ϰ,υ,τ)=LFLσ1sσLFLσA0(T,Z)A0(T,Z)+X0(ϰ,υ,τ),X2(ϰ,υ,τ)=LFLσ1sσLFLσA1(T,Z)A0(T,Z)+X1(ϰ,υ,τ),X3(ϰ,υ,τ)=LFLσ1sσLFLσA2(T,Z)A0(T,Z)+X2(ϰ,υ,τ), $$\begin{array}{} \displaystyle \qquad\qquad\qquad\qquad\qquad\quad X_{0}(\varkappa ,\upsilon ,\tau )=E_{\sigma }(\varkappa ^{\sigma }+\upsilon^{\sigma }),\, \\[0.1cm] X_{1}(\varkappa ,\upsilon ,\tau )=\text{ }-^{LF}L_{\sigma }^{-1}\left(s^{-\sigma }\left( ^{LF}L_{\sigma }\left[ A_{0}(T,Z)-A_{0}^{\prime}(T,Z)+X_{0}(\varkappa ,\upsilon ,\tau )\right] \right) \right) , \\[0.1cm] X_{2}(\varkappa ,\upsilon ,\tau )=\text{ }-^{LF}L_{\sigma }^{-1}\left(s^{-\sigma }\left( ^{LF}L_{\sigma }\left[ A_{1}(T,Z)-A_{0}^{\prime}(T,Z)+X_{1}(\varkappa ,\upsilon ,\tau )\right] \right) \right) ,{\, } \\[0.1cm] X_{3}(\varkappa ,\upsilon ,\tau )=\text{ }-^{LF}L_{\sigma }^{-1}\left( s^{-\sigma }\left( ^{LF}L_{\sigma }\left[ A_{2}(T,Z)-A_{0}^{\prime }(T,Z)+X_{2}(\varkappa ,\upsilon ,\tau )\right] \right) \right) , \\ \qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad \vdots \end{array}$$

T0(ϰ,υ,τ)=Eσ(ϰσυσ),T1(ϰ,υ,τ)=LFLσ1sσLFLσB0(X,Z)+B0(X,Z)T0(ϰ,υ,τ),T2(ϰ,υ,τ)=LFLσ1sσLFLσB1(X,Z)+B1(X,Z)T1(ϰ,υ,τ),T3(ϰ,υ,τ)=LFLσ1sσLFLσB2(X,Z)+B2(X,Z)T2(ϰ,υ,τ), $$\begin{array}{} \displaystyle \qquad\qquad\qquad\qquad\qquad T_{0}(\varkappa ,\upsilon ,\tau )=E_{\sigma }(\varkappa ^{\sigma }-\upsilon^{\sigma }),\, \\[0.1cm] T_{1}(\varkappa ,\upsilon ,\tau )=-^{LF}L_{\sigma }^{-1}\left( s^{-\sigma}\left( ^{LF}L_{\sigma }\left[ B_{0}(X,Z)+B_{0}^{\prime }(X,Z)-T_{0}(\varkappa,\upsilon ,\tau )\right] \right) \right) , \\[0.1cm] T_{2}(\varkappa ,\upsilon ,\tau )=-^{LF}L_{\sigma }^{-1}\left( s^{-\sigma}\left( ^{LF}L_{\sigma }\left[ B_{1}(X,Z)+B_{1}^{\prime }(X,Z)-T_{1}(\varkappa,\upsilon ,\tau )\right] \right) \right) ,{\, } \\[0.1cm] T_{3}(\varkappa ,\upsilon ,\tau )=-^{LF}L_{\sigma }^{-1}\left( s^{-\sigma}\left( ^{LF}L_{\sigma }\left[ B_{2}(X,Z)+B_{2}^{\prime }(X,Z)-T_{2}(\varkappa,\upsilon ,\tau )\right] \right) \right) , \\ \qquad\qquad\qquad\qquad\qquad\qquad\qquad\,\vdots \end{array}$$

and so on.

For example, The first few components of An(X), Bn(X, t) and C(T) polynomials [22], are given by:

A0(X)=X0X0,ϰ(σ),A1(X)=X0X1,ϰ(σ)+X1X0,ϰ(σ),A2(X)=X0X2,ϰ(σ)+X2X0,ϰ(σ)+X1X1,ϰ(σ), $$\begin{array}{} \displaystyle \begin{array}{c} A_{0}(X)=X_{0}X_{0,\varkappa }^{(\sigma )}, \\[0.1cm] A_{1}(X)=X_{0}X_{1,\varkappa }^{(\sigma )}+X_{1}X_{0,\varkappa }^{(\sigma )}, \\[0.1cm] A_{2}(X)=X_{0}X_{2,\varkappa }^{(\sigma )}+X_{2}X_{0,\varkappa }^{(\sigma)}+X_{1}X_{1,\varkappa }^{(\sigma )}, \vdots \end{array} \end{array}$$

B0(X,T)=(X0T0)ϰσ,B1(X,T)=(X0T1+X1T0)ϰσ,B2(X,T)=(X1T1+X0T2+X2T0)ϰσ, $$\begin{array}{} \displaystyle \begin{array}{c} B_{0}(X,T)=(X_{0}T_{0})_{\varkappa }^{\left( \sigma \right) }, \\[0.1cm] B_{1}(X,T)=(X_{0}T_{1}+X_{1}T_{0})_{\varkappa }^{\left( \sigma \right) }, \\[0.1cm] B_{2}(X,T)=(X_{1}T_{1}+X_{0}T_{2}+X_{2}T_{0})_{\varkappa }^{\left( \sigma \right) }, \\ \vdots \end{array} \end{array}$$

and

C0(T)=T0T0,ϰ(σ),C1(T)=T0T1,ϰ(σ)+T1T0,ϰ(σ),C2(T)=T0T2,ϰ(σ)+T2T0,ϰ(σ)+T1T1,ϰ(σ), $$\begin{array}{} \displaystyle \begin{array}{c} C_{0}(T)=T_{0}T_{0,\varkappa }^{(\sigma )}, \\[0.1cm] C_{1}(T)=T_{0}T_{1,\varkappa }^{(\sigma )}+T_{1}T_{0,\varkappa }^{(\sigma )}, \\[0.1cm] C_{2}(T)=T_{0}T_{2,\varkappa }^{(\sigma )}+T_{2}T_{0,\varkappa }^{(\sigma)}+T_{1}T_{1,\varkappa }^{(\sigma )}, \\ \vdots \end{array} \end{array}$$

According to the equations (44)-(45) and formulas (46)-(48), the first terms of local fractional Yang-Laplace decomposition method of the system (36), is given by:

X0(ϰ,τ)=sinσ(ϰσ),X1(ϰ,τ)=sinσ(ϰσ)τσΓ(1+σ),X2(ϰ,τ)=sinσ(ϰσ)τ2σΓ(1+2σ),X3(ϰ,τ)=sinσ(ϰσ)τ3σΓ(1+3σ), $$\begin{array}{} \displaystyle \begin{array}{c} X_{0}(\varkappa ,\tau )=\sin _{\sigma }(\varkappa ^{\sigma }),\ \\[0.1cm] X_{1}(\varkappa ,\tau )=-\sin _{\sigma }(\varkappa ^{\sigma })\frac{\tau^{\sigma }}{\Gamma (1+\sigma )}, \\[0.1cm] X_{2}(\varkappa ,\tau )=\sin _{\sigma }(\varkappa ^{\sigma })\frac{\tau^{2\sigma }}{\Gamma (1+2\sigma )},\text{\ } \\[0.1cm] X_{3}(\varkappa ,\tau )=-\sin _{\sigma }(\varkappa ^{\sigma })\frac{\tau^{3\sigma }}{\Gamma (1+3\sigma )}, \\ \vdots \end{array} \end{array}$$

and

T0(ϰ,τ)=sinσ(ϰσ),T1(ϰ,τ)=sinσ(ϰσ)τσΓ(1+σ),T2(ϰ,τ)=sinσ(ϰσ)τ2σΓ(1+2σ),T3(ϰ,τ)=sinσ(ϰσ)τ3σΓ(1+3σ), $$\begin{array}{} \displaystyle \begin{array}{c} T_{0}(\varkappa ,\tau )=\sin _{\sigma }(\varkappa ^{\sigma }),\ \\[0.1cm] T_{1}(\varkappa ,\tau )=-\sin _{\sigma }(\varkappa ^{\sigma })\frac{\tau^{\sigma }}{\Gamma (1+\sigma )}, \\[0.1cm] T_{2}(\varkappa ,\tau )=\sin _{\sigma }(\varkappa ^{\sigma })\frac{\tau^{2\sigma }}{\Gamma (1+2\sigma )}, \\[0.1cm] T_{3}(\varkappa ,\tau )=-\sin _{\sigma }(\varkappa ^{\sigma })\frac{\tau^{3\sigma }}{\Gamma (1+3\sigma )}, \\ \vdots \end{array} \end{array}$$

So that, the local fractional series solution (X, T), is:

X(ϰ,τ)=sinσ(ϰσ)1τσΓ(1+σ)+τ2σΓ(1+2σ)τ3σΓ(1+3σ)+,T(ϰ,τ)=sinσ(ϰσ)1τσΓ(1+σ)+τ2σΓ(1+2σ)τ3σΓ(1+3σ)+, $$\begin{array}{} \displaystyle \left\{ \begin{array}{c} X(\varkappa ,\tau )=\sin _{\sigma }(\varkappa ^{\sigma })\left( 1-\frac{\tau^{\sigma }}{\Gamma (1+\sigma )}+\frac{\tau ^{2\sigma }}{\Gamma (1+2\sigma )}-\frac{\tau ^{3\sigma }}{\Gamma (1+3\sigma )}+\cdots \right) , \\[0.1cm] T(\varkappa ,\tau )=\sin _{\sigma }(\varkappa ^{\sigma })\left( 1-\frac{\tau^{\sigma }}{\Gamma (1+\sigma )}+\frac{\tau ^{2\sigma }}{\Gamma (1+2\sigma )}-\frac{\tau ^{3\sigma }}{\Gamma (1+3\sigma )}+\cdots \right) , \end{array} \right. \end{array}$$

and in a closed form, we obtain the non-differentiable solution (X, T):

X(ϰ,τ)=sinσ(ϰσ)Eσ(τσ),T(ϰ,τ)=sinσ(ϰσ)Eσ(τσ). $$\begin{array}{} \displaystyle \left\{ \begin{array}{c} X(\varkappa ,\tau )=\sin _{\sigma }(\varkappa ^{\sigma })E_{\sigma }(-\tau^{\sigma }), \\[0.1cm] T(\varkappa ,\tau )=\sin _{\sigma }(\varkappa ^{\sigma })E_{\sigma }(-\tau^{\sigma }).{\, } \end{array} \right. \end{array}$$

By letting σ = 1 into (52), we have:

X(ϰ,τ)=sin(ϰ)eτ,T(ϰ,τ)=sin(ϰ)eτ. $$\begin{array}{} \displaystyle \left\{ \begin{array}{c} X(\varkappa ,\tau )=\sin (\varkappa )e^{-\tau }, \\[0.3cm] T(\varkappa ,\tau )=\sin (\varkappa )e^{-\tau }. \end{array} \right. \end{array}$$

It should be noticed that, solution (52) satisfies the initial conditions (37), and in the case σ = 1, we have the same solution obtained in [23] by homotopy perturbation method, and in [24] by the natural decomposition method.

As a second example, let us now consider the following:

Example 4.2

Let

Xτσ+TϰσZυσTυσZϰσ=XTτσ+XϰσZυσ+XυσZϰσ=TZτσ+XϰσTυσ+XυσTϰσ=Z,0<σ1, $$\begin{array}{} \displaystyle \left\{ \begin{array}{c} X_{\tau }^{\left( \sigma \right) }\, +T_{\varkappa }^{\left( \sigma \right)}Z_{\upsilon }^{\left( \sigma \right) }-T_{\upsilon }^{\left( \sigma \right) }Z_{\varkappa }^{\left( \sigma \right) }=-X \\[0.1cm] T_{\tau }^{\left( \sigma \right) }+X_{\varkappa }^{\left( \sigma \right)}Z_{\upsilon }^{\left( \sigma \right) }+X_{\upsilon }^{\left( \sigma \right)}Z_{\varkappa }^{\left( \sigma \right) }=T{ \, \, \, \, } \\[0.1cm] Z_{\tau }^{\left( \sigma \right) }+X_{\varkappa }^{\left( \sigma \right)}T_{\upsilon }^{\left( \sigma \right) }+X_{\upsilon }^{\left( \sigma \right) }T_{\varkappa }^{\left( \sigma \right) }=Z{ \, \, \, \, } \end{array} \right. ,\text{ }0 \lt \sigma \leqslant 1, \end{array}$$

be a nonlinear system of local fractional partial differential equations given under the initial conditions:

X(ϰ,υ,0)=Eσ(ϰσ+υσ),T(ϰ,υ,0)=Eσ(ϰσυσ),Z(ϰ,υ,0)=Eσ(ϰσ+υσ). $$\begin{array}{} \displaystyle X(\varkappa ,\upsilon ,0)=E_{\sigma }(\varkappa ^{\sigma }+\upsilon ^{\sigma}),\text{ }T(\varkappa ,\upsilon ,0)=E_{\sigma }(\varkappa ^{\sigma}-\upsilon ^{\sigma }),\text{ }Z(\varkappa ,\upsilon ,0)=E_{\sigma}(-\varkappa ^{\sigma }+\upsilon ^{\sigma }). \end{array}$$

Also in this case we will search for solutions by first applying the local fractional Yang-Laplace transform on both sides of each equation of the system (54):

LFSσX(ϰ,υ,τ)=X(ϰ,υ,0)sσLFLσTϰσZυσTυσZϰσ+XLFSσT(ϰ,υ,τ)=T(ϰ,υ,0)sσLFLσXϰσZυσ+XυσZϰσTLFSσZ(ϰ,υ,τ)=Z(ϰ,υ,0)sσLFLσXϰσTυσ+XυσTϰσZ. $$\begin{array}{} \displaystyle \left\{ \begin{array}{c} ^{LF}S_{\sigma }\left[ X(\varkappa ,\upsilon ,\tau )\right] =X(\varkappa,\upsilon ,0)-s^{-\sigma }\left( ^{LF}L_{\sigma }\left[ T_{\varkappa }^{\left(\sigma \right) }Z_{\upsilon }^{\left( \sigma \right) }-T_{\upsilon }^{\left(\sigma \right) }Z_{\varkappa }^{\left( \sigma \right) }+X\right] \right) \\[0.1cm] ^{LF}S_{\sigma }\left[ T(\varkappa ,\upsilon ,\tau )\right] =T(\varkappa,\upsilon ,0)-s^{-\sigma }\left( ^{LF}L_{\sigma }\left[ X_{\varkappa }^{\left(\sigma \right) }Z_{\upsilon }^{\left( \sigma \right) }+X_{\upsilon }^{\left(\sigma \right) }Z_{\varkappa }^{\left( \sigma \right) }-T\right] \right) \\[0.1cm] ^{LF}S_{\sigma }\left[ Z(\varkappa ,\upsilon ,\tau )\right] =Z(\varkappa,\upsilon ,0)-s^{-\sigma }\left( ^{LF}L_{\sigma }\left[ X_{\varkappa }^{\left(\sigma \right) }T_{\upsilon }^{\left( \sigma \right) }+X_{\upsilon }^{\left(\sigma \right) }T_{\varkappa }^{\left( \sigma \right) }-Z\right] \right) \end{array} \right. . \end{array}$$

From here, by taking the inverse local fractional Yang-Laplace transform on both sides of each equation of (56) and taking into account the initial conditions (55), we have:

X(ϰ,υ,τ)=Eσ(ϰσ+υσ)LFLσ1sσLFLσTϰσZυσTυσZϰσ+XT(ϰ,υ,τ)=Eσ(ϰσυσ)LFLσ1sσLFLσXϰσZυσ+XυσZϰσTZ(ϰ,υ,τ)=Eσ(ϰσ+υσ)LFLσ1sσLFLσXϰσTυσ+XυσTϰσZ. $$\begin{array}{} \displaystyle \left\{ \begin{array}{c} X(\varkappa ,\upsilon ,\tau )=E_{\sigma }(\varkappa ^{\sigma }+\upsilon^{\sigma })-^{LF}L_{\sigma }^{-1}\left( s^{-\sigma }\left( ^{LF}L_{\sigma }\left[T_{\varkappa }^{\left( \sigma \right) }Z_{\upsilon }^{\left( \sigma \right)}-T_{\upsilon }^{\left( \sigma \right) }Z_{\varkappa }^{\left( \sigma\right) }+X\right] \right) \right) \\[0.1cm] T(\varkappa ,\upsilon ,\tau )=E_{\sigma }(\varkappa ^{\sigma }-\upsilon^{\sigma })-^{LF}L_{\sigma }^{-1}\left( s^{-\sigma }\left( ^{LF}L_{\sigma }\left[X_{\varkappa }^{\left( \sigma \right) }Z_{\upsilon }^{\left( \sigma \right)}+X_{\upsilon }^{\left( \sigma \right) }Z_{\varkappa }^{\left( \sigma \right) }-T\right] \right) \right) \\[0.1cm] Z(\varkappa ,\upsilon ,\tau )=E_{\sigma }(-\varkappa ^{\sigma }+\upsilon^{\sigma })-^{LF}L_{\sigma }^{-1}\left( s^{-\sigma }\left( ^{LF}L_{\sigma }\left[X_{\varkappa }^{\left( \sigma \right) }T_{\upsilon }^{\left( \sigma \right)}+X_{\upsilon }^{\left( \sigma \right) }T_{\varkappa }^{\left( \sigma\right) }-Z\right] \right) \right) \end{array} \right. . \end{array}$$

Then by using the Adomian decomposition method [1] each function of the solution (X, T, Z) can be decomposed as an infinite series:

X(ϰ,υ,τ)=n=0Xn(ϰ,υ,τ),T(ϰ,υ,τ)=n=0Tn(ϰ,υ,τ),Z(ϰ,υ,τ)=n=0Zn(ϰ,υ,τ), $$\begin{array}{} \begin{array}{c} X(\varkappa ,\upsilon ,\tau )=\sum_{n=0}^{\infty }X_{n}(\varkappa,\upsilon ,\tau ), \\[0.3cm] T(\varkappa ,\upsilon ,\tau )=\sum_{n=0}^{\infty }T_{n}(\varkappa,\upsilon ,\tau ), \\[0.3cm] Z(\varkappa ,\upsilon ,\tau )=\sum_{n=0}^{\infty }Z_{n}(\varkappa,\upsilon ,\tau ), \end{array} \end{array}$$

and the nonlinear terms can be decomposed as:

TϰσZυσ=n=0An(T,Z),TυσZϰσ=n=0An(T,Z), $$\begin{array}{} \displaystyle T_{\varkappa }^{\left( \sigma \right) }Z_{\upsilon }^{\left( \sigma \right)}=\sum_{n=0}^{\infty }A_{n}(T,Z),{ \, \, }T_{\upsilon }^{\left(\sigma \right) }Z_{\varkappa }^{\left( \sigma \right)}=\sum_{n=0}^{\infty }A_{n}^{\prime }(T,Z), \end{array}$$

XϰσZυσ=n=0Bn(X,Z),XυσZϰσ=n=0Bn(X,Z), $$\begin{array}{} \displaystyle X_{\varkappa }^{\left( \sigma \right) }Z_{\upsilon }^{\left( \sigma \right)}=\sum_{n=0}^{\infty }B_{n}(X,Z),{ \, \, }X_{\upsilon }^{\left(\sigma \right) }Z_{\varkappa }^{\left( \sigma \right)}=\sum_{n=0}^{\infty }B_{n}^{\prime }(X,Z), \end{array}$$

and

XϰσTυσ=n=0Cn(X,T),XυσTϰσ=n=0Cn(X,T). $$\begin{array}{} \displaystyle X_{\varkappa }^{\left( \sigma \right) }T_{\upsilon }^{\left( \sigma \right)}=\sum_{n=0}^{\infty }C_{n}(X,T),{ \, \, }X_{\upsilon }^{\left( \sigma \right) }T_{\varkappa }^{\left( \sigma \right) }=\sum_{n=0}^{\infty }C_{n}^{\prime }(X,T). \end{array}$$

Substituting (58), (59), (60) and (67) into (57), we get:

n=0Xn(ϰ,υ,τ)=Eσ(ϰσ+υσ)LFLσ1sσLFLσn=0An(T,Z)n=0An(T,Z)+n=0Xn(ϰ,υ,τ),n=0Tn(ϰ,υ,τ)=Eσ(ϰσυσ)LFLσ1sσLFLσn=0Bn(X,Z)+n=0Bn(X,Z)n=0Tn(ϰ,υ,τ),n=0Zn(ϰ,υ,τ)=Eσ(ϰσ+υσ)LFLσ1sσLFLσn=0Cn(X,T)+n=0Cn(X,T)n=0Zn(ϰ,υ,τ).. $$\begin{array}{} \left\{ \begin{array}{c} \sum_{n=0}^{\infty }X_{n}(\varkappa ,\upsilon ,\tau )=E_{\sigma}(\varkappa ^{\sigma }+\upsilon ^{\sigma }) \\[0.3cm] -^{LF}L_{\sigma }^{-1}\left( s^{-\sigma }\left( ^{LF}L_{\sigma }\left[\sum_{n=0}^{\infty }A_{n}(T,Z)-\sum_{n=0}^{\infty}A_{n}^{\prime }(T,Z)+\sum_{n=0}^{\infty }X_{n}(\varkappa ,\upsilon,\tau )\right] \right) \right) , \\[0.3cm] \sum_{n=0}^{\infty }T_{n}(\varkappa ,\upsilon ,\tau )=E_{\sigma}(\varkappa ^{\sigma }-\upsilon ^{\sigma }) \\[0.3cm] -^{LF}L_{\sigma }^{-1}\left( s^{-\sigma }\left( ^{LF}L_{\sigma }\left[\sum_{n=0}^{\infty }B_{n}(X,Z)+\sum_{n=0}^{\infty}B_{n}^{\prime }(X,Z)-\sum_{n=0}^{\infty }T_{n}(\varkappa ,\upsilon,\tau )\right] \right) \right) , \\[0.3cm] \sum_{n=0}^{\infty }Z_{n}(\varkappa ,\upsilon ,\tau )=E_{\sigma}(-\varkappa ^{\sigma }+\upsilon ^{\sigma }) \\[0.3cm] -^{LF}L_{\sigma }^{-1}\left( s^{-\sigma }\left( ^{LF}L_{\sigma }\left[\sum_{n=0}^{\infty }C_{n}(X,T)+\sum_{n=0}^{\infty}C_{n}^{\prime }(X,T)-\sum_{n=0}^{\infty }Z_{n}(\varkappa ,\upsilon,\tau )\right] \right) \right) . \end{array} \right. . \end{array}$$

By comparing both sides of (62), we have:

X0(ϰ,υ,τ)=Eσ(ϰσ+υσ),X1(ϰ,υ,τ)=LFLσ1sσLFLσA0(T,Z)A0(T,Z)+X0(ϰ,υ,τ),X2(ϰ,υ,τ)=LFLσ1sσLFLσA1(T,Z)A0(T,Z)+X1(ϰ,υ,τ),X3(ϰ,υ,τ)=LFLσ1sσLFLσA2(T,Z)A0(T,Z)+X2(ϰ,υ,τ), $$\begin{array}{} \displaystyle \qquad\qquad\qquad\qquad\quad~~~ X_{0}(\varkappa ,\upsilon ,\tau )=E_{\sigma }(\varkappa ^{\sigma }+\upsilon^{\sigma }), \\[0.1cm] X_{1}(\varkappa ,\upsilon ,\tau )=\text{ }-^{LF}L_{\sigma }^{-1}\left(s^{-\sigma }\left( ^{LF}L_{\sigma }\left[ A_{0}(T,Z)-A_{0}^{\prime}(T,Z)+X_{0}(\varkappa ,\upsilon ,\tau )\right] \right) \right) , \\[0.1cm] X_{2}(\varkappa ,\upsilon ,\tau )=\text{ }-^{LF}L_{\sigma }^{-1}\left(s^{-\sigma }\left( ^{LF}L_{\sigma }\left[ A_{1}(T,Z)-A_{0}^{\prime}(T,Z)+X_{1}(\varkappa ,\upsilon ,\tau )\right] \right) \right) ,{\, } \\[0.1cm] X_{3}(\varkappa ,\upsilon ,\tau )=\text{ }-^{LF}L_{\sigma }^{-1}\left( s^{-\sigma }\left( ^{LF}L_{\sigma }\left[ A_{2}(T,Z)-A_{0}^{\prime }(T,Z)+X_{2}(\varkappa ,\upsilon ,\tau )\right] \right) \right) , \\ \qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad~~\vdots \end{array}$$

T0(ϰ,υ,τ)=Eσ(ϰσυσ),T1(ϰ,υ,τ)=LFLσ1sσLFLσB0(X,Z)+B0(X,Z)T0(ϰ,υ,τ),T2(ϰ,υ,τ)=LFLσ1sσLFLσB1(X,Z)+B1(X,Z)T1(ϰ,υ,τ),T3(ϰ,υ,τ)=LFLσ1sσLFLσB2(X,Z)+B2(X,Z)T2(ϰ,υ,τ), $$\begin{array}{} \displaystyle \qquad\qquad\qquad\qquad\quad T_{0}(\varkappa ,\upsilon ,\tau )=E_{\sigma }(\varkappa ^{\sigma }-\upsilon^{\sigma }),\, \\[0.1cm] T_{1}(\varkappa ,\upsilon ,\tau )=-^{LF}L_{\sigma }^{-1}\left( s^{-\sigma}\left( ^{LF}L_{\sigma }\left[ B_{0}(X,Z)+B_{0}^{\prime }(X,Z)-T_{0}(\varkappa,\upsilon ,\tau )\right] \right) \right) , \\[0.1cm] T_{2}(\varkappa ,\upsilon ,\tau )=-^{LF}L_{\sigma }^{-1}\left( s^{-\sigma}\left( ^{LF}L_{\sigma }\left[ B_{1}(X,Z)+B_{1}^{\prime }(X,Z)-T_{1}(\varkappa,\upsilon ,\tau )\right] \right) \right) ,{\, } \\[0.1cm] T_{3}(\varkappa ,\upsilon ,\tau )=-^{LF}L_{\sigma }^{-1}\left( s^{-\sigma}\left( ^{LF}L_{\sigma }\left[ B_{2}(X,Z)+B_{2}^{\prime }(X,Z)-T_{2}(\varkappa,\upsilon ,\tau )\right] \right) \right) , \\ \qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad\vdots \end{array}$$

and

Z0(ϰ,υ,τ)=Eσ(ϰσ+υσ),Z1(ϰ,υ,τ)=LFLσ1sσLFLσC0(X,T)+C0(X,T)Z0(ϰ,υ,τ),Z2(ϰ,υ,τ)=LFLσ1sσLFLσC1(X,T)+C1(X,T)Z1(ϰ,υ,τ),Z3(ϰ,υ,τ)=LFLσ1sσLFLσC2(X,T)+C2(X,T)Z2(ϰ,υ,τ), $$\begin{array}{} \displaystyle \qquad\qquad\qquad\qquad\quad Z_{0}(\varkappa ,\upsilon ,\tau )=E_{\sigma }(-\varkappa ^{\sigma }+\upsilon^{\sigma }),\, \\[0.1cm] Z_{1}(\varkappa ,\upsilon ,\tau )=-^{LF}L_{\sigma }^{-1}\left( s^{-\sigma}\left( ^{LF}L_{\sigma }\left[ C_{0}(X,T)+C_{0}^{\prime }(X,T)-Z_{0}(\varkappa,\upsilon ,\tau )\right] \right) \right) , \\[0.1cm] Z_{2}(\varkappa ,\upsilon ,\tau )=-^{LF}L_{\sigma }^{-1}\left( s^{-\sigma}\left( ^{LF}L_{\sigma }\left[ C_{1}(X,T)+C_{1}^{\prime }(X,T)-Z_{1}(\varkappa,\upsilon ,\tau )\right] \right) \right) ,{ } \\[0.1cm] Z_{3}(\varkappa ,\upsilon ,\tau )=-^{LF}L_{\sigma }^{-1}\left( s^{-\sigma}\left( ^{LF}L_{\sigma }\left[ C_{2}(X,T)+C_{2}^{\prime }(X,T)-Z_{2}(\varkappa,\upsilon ,\tau )\right] \right) \right) , \\ \qquad\qquad\qquad\qquad\qquad\qquad\qquad\quad \vdots \end{array}$$

and so on.

For example, the first few components of An(T, Z), Bn(X, Z) and Cn(X, T) polynomials [22], are:

A0(T,Z)=T0ϰσZ0υ(σ),A1(T,Z)=T1ϰσZ0υ(σ)+T0ϰσZ1υ(σ),A2(T,Z)=T0ϰσZ2υ(σ)+T2ϰσZ0υ(σ)+T1ϰσZ1υ(σ), $$\begin{array}{c} \displaystyle A_{0}(T,Z)=T_{0\varkappa }^{\left( \sigma \right) }Z_{0\upsilon }^{(\sigma)}, \\[0.2cm] A_{1}(T,Z)=T_{1\varkappa }^{\left( \sigma \right) }Z_{0\upsilon }^{(\sigma)}+T_{0\varkappa }^{\left( \sigma \right) }Z_{1\upsilon }^{(\sigma )}, \\[0.2cm] A_{2}(T,Z)=T_{0\varkappa }^{\left( \sigma \right) }Z_{2\upsilon }^{(\sigma)}+T_{2\varkappa }^{\left( \sigma \right) }Z_{0\upsilon }^{(\sigma)}+T_{1\varkappa }^{\left( \sigma \right) }Z_{1\upsilon }^{(\sigma )}, \\ \vdots \end{array}$$

B0(X,Z)=X0ϰσZ0υ(σ),B1(X,Z)=X1ϰσZ0υ(σ)+X0ϰσZ1υ(σ),B2(X,Z)=X0ϰσZ2υ(σ)+X2ϰσZ0υ(σ)+X1ϰσZ1υ(σ), $$\begin{array}{} \displaystyle \begin{array}{c} B_{0}(X,Z)=X_{0\varkappa }^{\left( \sigma \right) }Z_{0\upsilon }^{(\sigma)}, \\[0.2cm] B_{1}(X,Z)=X_{1\varkappa }^{\left( \sigma \right) }Z_{0\upsilon }^{(\sigma)}+X_{0\varkappa }^{\left( \sigma \right) }Z_{1\upsilon }^{(\sigma )}, \\[0.2cm] B_{2}(X,Z)=X_{0\varkappa }^{\left( \sigma \right) }Z_{2\upsilon }^{(\sigma)}+X_{2\varkappa }^{\left( \sigma \right) }Z_{0\upsilon }^{(\sigma)}+X_{1\varkappa }^{\left( \sigma \right) }Z_{1\upsilon }^{(\sigma )}, \\ \vdots \end{array} \end{array}$$

and

C0(X,T)=X0ϰσT0υ(σ),C1(X,T)=X1ϰσT0υ(σ)+X0ϰσT1υ(σ),C2(X,T)=X0ϰσT2υ(σ)+X2ϰσT0υ(σ)+X1ϰσT1υ(σ), $$\begin{array}{} \displaystyle \begin{array}{c} C_{0}(X,T)=X_{0\varkappa }^{\left( \sigma \right) }T_{0\upsilon }^{(\sigma)}, \\[0.2cm] C_{1}(X,T)=X_{1\varkappa }^{\left( \sigma \right) }T_{0\upsilon }^{(\sigma)}+X_{0\varkappa }^{\left( \sigma \right) }T_{1\upsilon }^{(\sigma )}, \\[0.2cm] C_{2}(X,T)=X_{0\varkappa }^{\left( \sigma \right) }T_{2\upsilon }^{(\sigma)}+X_{2\varkappa }^{\left( \sigma \right) }T_{0\upsilon }^{(\sigma)}+X_{1\varkappa }^{\left( \sigma \right) }T_{1\upsilon }^{(\sigma )}, \\ \vdots \end{array} \end{array}$$

The other polynomials An,Bn andCn, $\begin{array}{} \displaystyle A_{n}^{\prime },~B_{n}^{\prime }~\text{ and}~ C_{n}^{\prime }, \end{array}$ can be computed in the same way.

From the equations (63)-(65) and formulas of the polynomial terms, the first terms of local fractional Yang-Laplace decomposition method of the system (54), is given by:

X0(ϰ,υ,τ)=Eσ(ϰσ+υσ),X1(ϰ,υ,τ)=Eσ(ϰσ+υσ)τσΓ1+σ,X2(ϰ,υ,τ)=Eσ(ϰσ+υσ)τ2σΓ1+2σ,X3(ϰ,υ,τ)=Eσ(ϰσ+υσ)τ3σΓ1+3σ, $$\begin{array}{c} \displaystyle X_{0}(\varkappa ,\upsilon ,\tau )=E_{\sigma }(\varkappa ^{\sigma }+\upsilon^{\sigma }), \\[0.1cm] X_{1}(\varkappa ,\upsilon ,\tau )=-E_{\sigma }(\varkappa ^{\sigma }+\upsilon^{\sigma })\frac{\tau ^{\sigma }}{\Gamma \left( 1+\sigma \right) }, \\[0.1cm] X_{2}(\varkappa ,\upsilon ,\tau )=E_{\sigma }(\varkappa ^{\sigma }+\upsilon^{\sigma })\frac{\tau ^{2\sigma }}{\Gamma \left( 1+2\sigma \right) }, \\[0.1cm] X_{3}(\varkappa ,\upsilon ,\tau )=-E_{\sigma }(\varkappa ^{\sigma }+\upsilon^{\sigma })\frac{\tau ^{3\sigma }}{\Gamma \left( 1+3\sigma \right) }, \\ \vdots \end{array}$$

T0(ϰ,υ,τ)=Eσ(ϰσυσ),T1(ϰ,υ,τ)=Eσ(ϰσυσ)τσΓ1+σ,T2(ϰ,υ,τ)=Eσ(ϰσυσ)τ2σΓ1+2σ,T3(ϰ,υ,τ)=Eσ(ϰσυσ)τ3σΓ1+3σ, $$\begin{array}{c} \displaystyle T_{0}(\varkappa ,\upsilon ,\tau )=E_{\sigma }(\varkappa ^{\sigma }-\upsilon^{\sigma }),\, \\[0.1cm] T_{1}(\varkappa ,\upsilon ,\tau )=E_{\sigma }(\varkappa ^{\sigma }-\upsilon^{\sigma })\frac{\tau ^{\sigma }}{\Gamma \left( 1+\sigma \right) }, \\[0.1cm] T_{2}(\varkappa ,\upsilon ,\tau )=E_{\sigma }(\varkappa ^{\sigma }-\upsilon^{\sigma })\frac{\tau ^{2\sigma }}{\Gamma \left( 1+2\sigma \right) },{ } \\[0.1cm] T_{3}(\varkappa ,\upsilon ,\tau )=E_{\sigma }(\varkappa ^{\sigma }-\upsilon^{\sigma })\frac{\tau ^{3\sigma }}{\Gamma \left( 1+3\sigma \right) }, \\ \vdots \end{array}$$

and

Z0(ϰ,υ,τ)=Eσ(ϰσ+υσ),Z1(ϰ,υ,τ)=Eσ(ϰσ+υσ)τσΓ1+σ,Z2(ϰ,υ,τ)=Eσ(ϰσ+υσ)τ2σΓ1+2σ,Z3(ϰ,υ,τ)=Eσ(ϰσ+υσ)τ3σΓ1+3σ, $$\begin{array}{c} \displaystyle Z_{0}(\varkappa ,\upsilon ,\tau )=E_{\sigma }(-\varkappa ^{\sigma }+\upsilon ^{\sigma }),\, \\[0.1cm] Z_{1}(\varkappa ,\upsilon ,\tau )=E_{\sigma }(-\varkappa ^{\sigma }+\upsilon^{\sigma })\frac{\tau ^{\sigma }}{\Gamma \left( 1+\sigma \right) }, \\[0.1cm] Z_{2}(\varkappa ,\upsilon ,\tau )=E_{\sigma }(-\varkappa ^{\sigma }+\upsilon^{\sigma })\frac{\tau ^{2\sigma }}{\Gamma \left( 1+2\sigma \right) }, \\[0.1cm] Z_{3}(\varkappa ,\upsilon ,\tau )=E_{\sigma }(-\varkappa ^{\sigma }+\upsilon^{\sigma })\frac{\tau ^{3\sigma }}{\Gamma \left( 1+3\sigma \right) }, \\ \vdots \end{array}$$

Each function of the solution (X, T, Z) is defined by an approximate series as follows:

X(ϰ,υ,τ)=Eσ(ϰσ+υσ)(1τσΓ1+σ+τ2σΓ1+2στ3σΓ1+3σ+),T(ϰ,υ,τ)=Eσ(ϰσυσ)(1+τσΓ1+σ+τ2σΓ1+2σ+τ3σΓ1+3σ+),Z(ϰ,υ,τ)=Eσ(ϰσ+υσ)(1+τσΓ1+σ+τ2σΓ1+2σ+τ3σΓ1+3σ+). $$\begin{array}{} \displaystyle \left\{ \begin{array}{c} X(\varkappa ,\upsilon ,\tau )=E_{\sigma }(\varkappa ^{\sigma }+\upsilon^{\sigma })(1-\frac{\tau ^{\sigma }}{\Gamma \left( 1+\sigma \right) }+\frac{\tau ^{2\sigma }}{\Gamma \left( 1+2\sigma \right) }-\frac{\tau ^{3\sigma }}{\Gamma \left( 1+3\sigma \right) }+\cdots ), \\ T(\varkappa ,\upsilon ,\tau )=E_{\sigma }(\varkappa ^{\sigma }-\upsilon^{\sigma })(1+\frac{\tau ^{\sigma }}{\Gamma \left( 1+\sigma \right) }+\frac{\tau ^{2\sigma }}{\Gamma \left( 1+2\sigma \right) }+\frac{\tau ^{3\sigma }}{\Gamma \left( 1+3\sigma \right) }+\cdots ), \\ Z(\varkappa ,\upsilon ,\tau )=E_{\sigma }(-\varkappa ^{\sigma }+\upsilon^{\sigma })(1+\frac{\tau ^{\sigma }}{\Gamma \left( 1+\sigma \right) }+\frac{\tau ^{2\sigma }}{\Gamma \left( 1+2\sigma \right) }+\frac{\tau ^{3\sigma }}{\Gamma \left( 1+3\sigma \right) }+\cdots ) \, . \end{array} \right. \end{array}$$

So that in closed form, the non-differentiable solution (X, T, Z) can be written as:

X(ϰ,υ,τ)=Eσ(ϰσ+υσ)Eστσ,T(ϰ,υ,τ)=Eσ(ϰσυσ)Eστσ,Z(ϰ,υ,τ)=Eσ(ϰσ+υσ)Eστσ, $$\begin{array}{} \displaystyle \left\{ \begin{array}{c} X(\varkappa ,\upsilon ,\tau )=E_{\sigma }(\varkappa ^{\sigma }+\upsilon^{\sigma })E_{\sigma }\left( -\tau ^{\sigma }\right) , \\[0.2cm] T(\varkappa ,\upsilon ,\tau )=E_{\sigma }(\varkappa ^{\sigma }-\upsilon^{\sigma })E_{\sigma }\left( \tau ^{\sigma }\right) , \\[0.2cm] Z(\varkappa ,\upsilon ,\tau )=E_{\sigma }(-\varkappa ^{\sigma }+\upsilon^{\sigma })E_{\sigma }\left( \tau ^{\sigma }\right) , \end{array} \right. \end{array}$$

and, according to [17],

X(ϰ,υ,τ)=Eσ(ϰσ+υστσ),T(ϰ,υ,τ)=Eσ(ϰσυσ+τσ),Z(ϰ,υ,τ)=Eσ(ϰσ+υσ+τσ). $$\begin{array}{} \displaystyle \left\{ \begin{array}{c} X(\varkappa ,\upsilon ,\tau )=E_{\sigma }(\varkappa ^{\sigma }+\upsilon^{\sigma }-\tau ^{\sigma }), \\[0.2cm] T(\varkappa ,\upsilon ,\tau )=E_{\sigma }(\varkappa ^{\sigma }-\upsilon^{\sigma }+\tau ^{\sigma }), \\[0.2cm] Z(\varkappa ,\upsilon ,\tau )=E_{\sigma }(-\varkappa ^{\sigma }+\upsilon^{\sigma }+\tau ^{\sigma }). \end{array} \right. \end{array}$$

In particular, by letting σ = 1, from (74), we get

X(ϰ,υ,τ)=eϰ+υτ,T(ϰ,υ,τ)=eϰυ+τ,Z(ϰ,υ,τ)=eϰ+υ+τ. $$\begin{array}{} \displaystyle \left\{ \begin{array}{c} X(\varkappa ,\upsilon ,\tau )=e^{\varkappa +\upsilon -\tau }, \\[0.2cm] T(\varkappa ,\upsilon ,\tau )=e^{\varkappa -\upsilon +\tau }, \\[0.2cm] Z(\varkappa ,\upsilon ,\tau )=e^{-\varkappa +\upsilon +\tau }. \end{array} \right. \end{array}$$

Let us notice that, our solution (74) fulfills the initial conditions (55), and in the case σ = 1, we re-obtain the same solution already obtained both in [26] by the projected differential transform method and Elzaki transform, and in [24] by the natural decomposition method. Thus showing that the method proposed in this paper is the more general approach to the solution of nonlinear fractional differential system.

Conclusions

The local fractional Yang-Laplace transform decomposition method (LFLDM) has been used to solve nonlinear systems of local fractional partial differential equations. It has been shown that combined with the Adomian decomposiition method, LFLDM enables us to establish an efficient algorithm. This algorithm provides the solution in a series form that converges rapidly to the exact solution, as shown by the results obtained through the two non-trivial examples given in this paper. From the obtained results, it can be concluded that this algorithm is powerful and effective and it can be used to explore some more complicated nonlinear systems with local fractional derivative.

eISSN:
2444-8656
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
Volume Open
Fachgebiete der Zeitschrift:
Biologie, andere, Mathematik, Angewandte Mathematik, Allgemeines, Physik