Uneingeschränkter Zugang

The high accuracy conserved splitting domain decomposition scheme for solving the parabolic equations

 und    | 31. Dez. 2018

Zitieren

Introduction

Time-dependent parabolic equations are widely used in science and engineering, which are described water head in groundwater modelling, pressure in petroleum reservoir simulation, diffusion phenomena in heat propagation, and atmospheric aerosol transport problems, etc (see [1,2,3, 7,8]). Due to the computational complexities and huge computational costs in applications, the non-overlapping explicit/implicit domain decomposition method have been an important tool for solving parabolic equations [4, 6, 7, 10,11]. Domain decomposition schemes that preserve the mass of the model are important and also required for parallel computations, specially, in long time simulations and for large scale applications. Paper [5] presented an explicit-implicit conservative domain decomposition procedure for parabolic equations, where the fluxes at the sub-domain interfaces were calculated by an average operator from the solutions at the previous time level. Paper [16] studied the cell centered finite difference domain decomposition procedure for the heat equations with constant coefficients in one dimension. Papers [13,14,15] proposed conservative parallel difference schemes for solving 2-dimension (nonlinear) diffusion equation and the theoretical analysis was proved in paper [9]. By the operator splitting technique and the coupling of the solution and its fluxes on staggered meshes, papers [17,18,19] analyzed the new mass-preserving S-DDM scheme for solving parabolic equations and convection-diffusion equations. However, the above conservative domain decomposition methods are only first-order in time. Recently, papers [20,21,22] proposed the time second-order mass-conserved domain decomposition methods for parabolic equations with constant coefficients and variable coefficients, respectively.

In this paper, for improving the accuracy and stability of the mass-conserved schemes in papers [20,21,22], we propose the time second-order and space fourth-order conservative domain decomposition schemes for one-dimension and 2-dimension parabolic equations with Neumann boundary conditions. In the domain decomposition method, we take two steps to solve one-dimension problem. The time extrapolation and local multi-point weighted average schemes are used to approximate the interface fluxes on interfaces of sub-domains, while the interior solutions are computed by the time second-order and space fourth-order implicit schemes in sub-domains. By the operator splitting technique, we take three small time steps (i.e., along x−direction, y−direction and x−direction) to solve 2-dimension parabolic equations at each time interval, successively. The new feature of our schemes is of fourth order accuracy in space step and the stability condition is weaker by increasing properly the value of m. Numerical experiments are given to confirm mass conservation and convergence.

Time second-order and space fourth-order conserved DDM for 1-dimension parabolic equations
One-dimension parabolic model and partition

The one dimensional parabolic equations with variable coefficients are considered as follows,

utx(D(x)ux)=f(x,t),x[0,L],t[0,T],uxx=0=0,ux|x=L=0,t[0,T],u(x,0)=u0(x),x[0,L].$$\begin{array}{} \displaystyle \left\{ \begin{array}{}\frac{\partial u}{\partial t}-\frac{\partial}{\partial x}( D(x)\frac{\partial u}{\partial x})=f(x,t), \qquad x\in [0, L], \quad t\in[0,\,T], \\ \frac{\partial u}{\partial x}\mid_{x=0}=0, \,\frac{\partial u}{\partial x}|_{x=L}=0, \qquad t\in[0,\,T],\\ u(x,0)=u_0(x),\qquad x\in[0, L]. \end{array} \right. \end{array}$$

where D(x) is diffusion coefficients and 0 < D0D(x) ≤ D1. Let h > 0 be the space step length, and {xi+12}$\begin{array}{} \big\{x_{i+\frac{1}{2}}\big\} \end{array}$ , {xi} be the uniform staggered partition points as

x12=0,xI+12=L,xi+12=ih,i=1,2,,I1,xi=(i12)h,i=1,2,,I.$$\begin{array}{} \displaystyle x_{\frac{1}{2}}=0,\, x_{I+\frac{1}{2}}=L,\, x_{i+\frac{1}{2}}=ih,\, i=1, 2,\cdots, I-1,\, x_{i}=(i-\frac{1}{2})h,\quad i=1, 2,\cdots, I. \end{array}$$

Let τ > 0 be the time step length and tn be the uniform partition points of [0, T] as

t0=0,tM=T,tn=nτ,n=1,2,,M1.$$\begin{array}{} \displaystyle t^0=0,\quad t^M = T,\quad t^n=n\tau,\quad n=1, 2,\cdots, M-1. \end{array}$$

For functions F(x, t), define the difference operators as follows,

τFin=FinFin1τ,Fin+12=Fin+Fin+12,δxFi+12n=Fi+1nFinh,ΔhFin=δxFi+12nδxFi12nh=Fi+1n2Fin+Fi1nh2,δx3Fi+12n=Δh[δxFi+12n]=Fi+2n3Fi+1n+3FinFi1nh3.$$\begin{array}{} \displaystyle \qquad\qquad\qquad\qquad\partial_{\tau} F_{i}^n=\frac{F_{i}^{n}-F_{i}^{n-1}}{\tau},\quad F_{i}^{n+\frac{1}{2}}=\frac{F_{i}^n+F_{i}^{n+1}}{2},\quad\delta_{x} F_{i+\frac{1}{2}}^n=\frac{F_{i+1}^n-F_{i}^n}{h}, \\ \displaystyle\Delta_h F_i^n=\frac{\delta_{x} F_{i+\frac{1}{2}}^n-\delta_{x} F_{i-\frac{1}{2}}^n}{h}=\frac{F_{i+1}^n-2F_{i}^n+F_{i-1}^n}{h^2},\quad \delta^3_{x} F_{i+\frac{1}{2}}^n=\Delta_h [\delta_{x}F_{i+\frac{1}{2}}^n]=\frac{F_{i+2}^n-3F_{i+1}^n+3F_{i}^n-F_{i-1}^n}{h^3}. \end{array}$$

mass conserved domain decomposition method

For the stake of simplicity, the domain [0, L] is divided into two sub-domains and xk+12$\begin{array}{} x_{k+\frac{1}{2}} \end{array}$ is the interface point of the sub-domains. Let {Uin}and{Qi+12n}$\begin{array}{} \{U_i^n\}~~ \text{and}~~\{Q_{i+\frac{1}{2}}^n\} \end{array}$ be the numerical approximations of the exact solutions {uin}$\begin{array}{} \{u_i^n\} \end{array}$ and {Di+12unxi+12}$\begin{array}{} \{{D_{i+\frac{1}{2}}\frac{\partial u^n}{\partial x}}\mid_{i+\frac{1}{2}}\} \end{array}$.

Define πi+12n=δxUi+12n,qi+12n=Di+12πi+12n$\begin{array}{} \pi^n_{i+\frac{1}{2}}=\delta_{x} U^{n}_{i+\frac{1}{2}}, q^n_{i+\frac{1}{2}}=D_{i+\frac{1}{2}}\pi^n_{i+\frac{1}{2}} \end{array}$ and

π~i+12n=1mH[54(l=i+1i+mUlnl=im+1iUln)112(l=i+m+1i+2mUlnl=i2m+1imUln)]+h212δx3Ui+12n,$$\begin{array}{} \displaystyle \tilde \pi^{n}_{i+\frac{1}{2}}=\frac{1}{mH}[\frac{5}{4}(\sum_{l=i+1}^{i+m}U_l^{n} -\sum_{l=i-m+1}^{i}U_l^{n})-\frac{1}{12}(\sum_{l=i+m+1}^{i+2m}U_l^{n} -\sum_{l=i-2m+1}^{i-m}U_l^{n})]+\frac{h^2}{12}\delta^3_{x} U_{i+\frac{1}{2}}^n, \end{array}$$

and q~i+12n=Di+12π~ni+12$\begin{array}{} \tilde q^{n}_{i+\frac{1}{2}}={D_{i+\frac{1}{2}}}{\tilde \pi^{n}}_{i+\frac{1}{2}} \end{array}$. Where the large space step H = mh and m is the integer.

Now, we propose the time second-order and space fourth-order conservative domain decomposition scheme of Eqns. (1) in two steps at every time [tn−1, tn].

The interface fluxes {Qk+12n+1}$\begin{array}{} \{{Q}_{k+\frac{1}{2}}^{{n+1}}\} \end{array}$ on the interface are firstly computed by

Qk+12n+1=qˇk+12n+1h224Δhqˇk+12n+1h224Di+12Δhπˇk+12n+1,$$\begin{array}{} \displaystyle Q^{n+1}_{k+\frac{1}{2}}=\check q^{n+1}_{k+\frac{1}{2}}-\frac{{h}^2}{24}\Delta_{h} \check q^{n+1}_{k+\frac{1}{2}}-\frac{{h}^2}{24} D_{i+\frac{1}{2}}\Delta_{h}\check\pi^{n+1}_{k+\frac{1}{2}}, \end{array}$$

where qˇk+12n+1andπˇk+12n+1$\begin{array}{} \check q^{n+1}_{k+\frac{1}{2}}~~ \text{and}~~ \check\pi^{n+1}_{k+\frac{1}{2}} \end{array}$ are computed by the time extrapolation and local multi-point weighted average scheme as follows,

qˇk+12n+1=2q~k+12nq~k+12n1,πˇk+12n+1=2π~k+12nπ~k+12n1.$$\begin{array}{} \displaystyle \check q^{n+1}_{k+\frac{1}{2}}=2\tilde q^{n}_{k+\frac{1}{2}}-\tilde q^{{n-1}}_{k+\frac{1}{2}},\quad \check \pi^{n+1}_{k+\frac{1}{2}}=2\tilde \pi^{n}_{k+\frac{1}{2}}-\tilde \pi^{n-1}_{k+\frac{1}{2}}. \end{array}$$

The interior points {Uin+1}$\begin{array}{} \{U^{n+1}_{i}\} \end{array}$ on two sub-domains are computed by the following scheme,

τUin+112(δxQin+δxQin+1)=fin+12,$$\begin{array}{} \displaystyle \partial _\tau U_i^{n+1}-\frac{1}{2}(\delta_{x}Q_{i}^n +\delta_{x}Q_{i}^{n+1})=f_{i}^{n+\frac{1}{2}}, \end{array}$$

where {Qi+12n+1}and{Qi+12n}$\begin{array}{} \{Q_{i+\frac{1}{2}}^{n+1}\}~~ \text{and}~~ \{Q_{i+\frac{1}{2}}^n\} \end{array}$ are coupled computed as

Qi+12n=qi+12nh224Δhqi+12nh224Di+12ΔhδxUi+12n,i=1,2,,IQi+12n+1=qi+12n+1h224Δhqi+12n+1h224Di+12ΔhδxUi+12n+1,ik1,k,k+1,Qi+12n+1=qi+12n+1h224Δhqi+12n+1h224Di+12ΔhδxUi+12n+1+124(qk+12n+1qˇk+12n+1)+Di+1224(πk+12n+1πˇk+12n+1),i=k±1.$$\begin{array}{} \displaystyle \left\{ \begin{array}{ll} Q^{n}_{i+\frac{1}{2}}=q^{n}_{i+\frac{1}{2}}-\frac{h^2}{24}\Delta_h q^{n}_{i+\frac{1}{2}}-\frac{h^2}{24}D_{i+\frac{1}{2}}\Delta_h \delta_xU^{n}_{i+\frac{1}{2}},\quad\forall i=1,2,\cdots,I\\ Q^{n+1}_{i+\frac{1}{2}}=q^{n+1}_{i+\frac{1}{2}}-\frac{h^2}{24}\Delta_h q^{n+1}_{i+\frac{1}{2}}-\frac{h^2}{24}D_{i+\frac{1}{2}}\Delta_h \delta_xU^{n+1}_{i+\frac{1}{2}},\quad i\neq k-1,k,k+1,\\ Q^{n+1}_{i+\frac{1}{2}}=q^{n+1}_{i+\frac{1}{2}}-\frac{h^2}{24}\Delta_h q^{n+1}_{i+\frac{1}{2}}-\frac{h^2}{24}D_{i+\frac{1}{2}}\Delta_h \delta_xU^{n+1}_{i+\frac{1}{2}}+\frac{1}{24}(q^{n+1}_{k+\frac{1}{2}}-\check q^{n+1}_{k+\frac{1}{2}})\\ \qquad\qquad+\frac{D_{i+\frac{1}{2}}}{24}(\pi^{n+1}_{k+\frac{1}{2}}-\check \pi^{n+1}_{k+\frac{1}{2}}), \quad i=k\pm1. \end{array} \right. \end{array}$$

with the boundary conditions as Q12n=QI+12n$\begin{array}{} Q^{n}_{\frac{1}{2}}=Q^{n}_{I+\frac{1}{2}} \end{array}$ = 0. The initial values are given by

Ui0=u0(xi),i=1,2,,I,$$\begin{array}{} \displaystyle U_i^0=u^0(x_i), \quad i=1, 2,\cdots, I, \end{array}$$

and the first time level values {Ui1}$\begin{array}{} \{U_i^{1}\} \end{array}$ are also first computed by the implicit scheme as

τUi112(δxQi1+δxQi0)=fi12,i=1,2,,I.$$\begin{array}{} \displaystyle \partial_\tau U_i^1-\frac{1}{2}(\delta_{x}Q_{i}^1 +\delta_{x}Q_{i}^{0})=f^{\frac{1}{2}}_{i},\quad i=1, 2,\cdots, I. \end{array}$$

Theorem 1

(Mass conservation)The scheme (6) - (11) preserves the global mass conservation over the whole domain, i.e., iff(x, t) = 0, then we can obtain

i=1IUinh=i=1IUi0h,n=1,2,,M.$$\begin{array}{} \sum_{i=1}^{I}U_i^{n}h=\sum_{i=1}^{I}U_i^{0}h,\quad n=1, 2,\cdots, M. \end{array}$$

Proof

When f(x, t) = 0, multiplying (8) by h and summing up from i = 1 to I, we can obtain that

i=1IτUinh12i=1I(δxQin+δxQin1)h=0,n=1,2,,M.$$\begin{array}{} \sum_{i=1}^{I}\partial _\tau U_i^nh-\frac{1}{2}\sum_{i=1}^{I}(\delta_{x}Q_{i}^n+\delta_{x}Q_{i}^{n-1})h=0,\quad n=1, 2,\cdots, M. \end{array}$$

Using the boundary condition Q12=QI+12$\begin{array}{} Q_{\frac{1}{2}}=Q_{I+\frac{1}{2}} \end{array}$ = 0., we can obtain that

i=1IδxQinh=0,i=1IδxQin1h=0,n=1,2,,M.$$\begin{array}{} \sum_{i=1}^{I}\delta_{x}Q_{i}^nh=0,\qquad \sum_{i=1}^{I}\delta_{x}Q_{i}^{n-1}h=0,\quad n=1, 2,\cdots, M. \end{array}$$

Substituting (14) into (13), we have that i=1ItUinh$\begin{array}{} \sum_{i=1}^{I}\partial _t U_i^nh \end{array}$ = 0. Further, it holds that

i=1IUinh=i=1IUin1h==i=1IUi0h.$$\begin{array}{} \sum_{i=1}^{I}U_i^{n}h=\sum_{i=1}^{I}U_i^{n-1}h=\cdots =\sum_{i=1}^{I}U_i^{0}h . \end{array}$$

This ends the proof of the theorem.

Theorem 2

If the exact solutionusatisfies the regularity condition uC0([0, T]; C5(Ω)) ∩ C2([0, T]; C0(Ω)), we have that

1mH[54(l=i+1i+mulnl=im+1iuln)112(l=i+m+1i+2mulnl=i2m+1imuln)]+h212δx3ui+12n=δxui+12n+O(h4+H4).$$\begin{array}{} \frac{1}{mH}[\frac{5}{4}(\sum_{l=i+1}^{i+m}u_l^{n} -\sum_{l=i-m+1}^{i}u_l^{n})-\frac{1}{12}(\sum_{l=i+m+1}^{i+2m}u_l^{n} -\sum_{l=i-2m+1}^{i-m}u_l^{n})]+\frac{h^2}{12}\delta^3_{x} u_{i+\frac{1}{2}}^n \\ =\delta_xu_{i+\frac{1}{2}}^n+O(h^4+H^4). \end{array}$$

and

uln+1(2ulnuln1)=O(τ2).$$\begin{array}{} u_l^{n+1}-(2u_l^{n}-u_l^{n-1})=O(\tau^2). \end{array}$$

Proof

For uln$\begin{array}{} u_{l}^n \end{array}$ (l = i − 2m + 1, i − 2m + 2, ⋯, i + 2m), by Taylor expansion, it holds that

uln=ui+12n+uxi+12(li12)h+122ux2i+12(li12)2h2+163ux3i+12(li12)3h3+1244ux4i+12(li12)4h4+11205ux5i+12(li12)5h5.$$\begin{array}{} u_l^{n}=u^n_{i+\frac{1}{2}}+\frac{\partial u}{\partial x}\mid_{i+\frac{1}{2}}(l-i-\frac{1}{2}) h +\frac{1}{2}\frac{\partial^2 u}{\partial x^2}\mid_{i+\frac{1}{2}}(l-i-\frac{1}{2})^2 h^2+ \frac{1}{6}\frac{\partial^3 u}{\partial x^3}\mid_{i+\frac{1}{2}}(l-i-\frac{1}{2})^3 h^3\\ \qquad~+\frac{1}{24}\frac{\partial^4 u}{\partial x^4}\mid_{i+\frac{1}{2}}(l-i-\frac{1}{2})^4 h^4 +\frac{1}{120}\frac{\partial^5 u}{\partial x^5}\mid_{i+\frac{1}{2}}(l-i-\frac{1}{2})^5 h^5. \end{array}$$

Summing with l from i + 1 to i + m, we can obtain that

l=i+1i+muln=mui+12n+uxi+12m22h+122ux2i+12m(4m21)12h2+163ux3i+12m2(2m21)8h3+1244ux4i+12κ=1m(κ12)4h4+11205ux5i+12κ=1m(κ12)5h5.$$\begin{array}{} \sum_{l=i+1}^{i+m}u_l^{n}=mu^n_{i+\frac{1}{2}}+\frac{\partial u}{\partial x}\mid_{i+\frac{1}{2}}\frac{m^2}{2} h +\frac{1}{2}\frac{\partial^2 u}{\partial x^2}\mid_{i+\frac{1}{2}}\frac{m(4m^2-1)}{12} h^2+ \frac{1}{6}\frac{\partial^3 u}{\partial x^3}\mid_{i+\frac{1}{2}}\frac{m^2(2m^2-1)}{8} h^3\\ \qquad\qquad\quad~~+\frac{1}{24}\frac{\partial^4 u}{\partial x^4}\mid_{i+\frac{1}{2}}\sum_{\kappa=1}^{m}(\kappa-\frac{1}{2})^4 h^4 +\frac{1}{120}\frac{\partial^5 u}{\partial x^5}\mid_{i+\frac{1}{2}}\sum_{\kappa=1}^{m}(\kappa-\frac{1}{2})^5 h^5. \end{array}$$

where κ = li, and summing with with l from im − 1 to i, we have that

l=im1iuln=mui+12nuxi+12m22h+122ux2i+12m(4m21)12h2163ux3i+12m2(2m21)8h3+1244ux4i+12κ=1m(κ12)4h411205ux5i+12κ=1m(κ12)5h5.$$\begin{array}{} \sum_{l=i-m-1}^{i}u_l^{n}=\!\!\!\!&mu^n_{i+\frac{1}{2}}-\frac{\partial u}{\partial x}\mid_{i+\frac{1}{2}}\frac{m^2}{2} h +\frac{1}{2}\frac{\partial^2 u}{\partial x^2}\mid_{i+\frac{1}{2}}\frac{m(4m^2-1)}{12} h^2- \frac{1}{6}\frac{\partial^3 u}{\partial x^3}\mid_{i+\frac{1}{2}}\frac{m^2(2m^2-1)}{8} h^3\\ &+\frac{1}{24}\frac{\partial^4 u}{\partial x^4}\mid_{i+\frac{1}{2}}\sum_{\kappa=1}^{m}(\kappa-\frac{1}{2})^4 h^4 -\frac{1}{120}\frac{\partial^5 u}{\partial x^5}\mid_{i+\frac{1}{2}}\sum_{\kappa=1}^{m}(\kappa-\frac{1}{2})^5 h^5. \end{array}$$

Subtracted (20) from (19), we can obtain that

l=i+1i+mulnl=im+1iuln=uxi+12mH+1243ux3i+12mH(2m21)h2+O(H4).$$\begin{array}{} \sum_{l=i+1}^{i+m}u_l^{n} -\sum_{l=i-m+1}^{i}u_l^{n}=\frac{\partial u}{\partial x}\mid_{i+\frac{1}{2}}mH +\frac{1}{24}\frac{\partial^3 u}{\partial x^3}\mid_{i+\frac{1}{2}}mH(2m^2-1)h^2+O(H^4). \end{array}$$

Similarly, it holds that

l=i+m+1i+2mulnl=i2m+1imuln=3uxi+12mH+183ux3i+12mH(10m21)h2+O(H4).$$\begin{array}{} \sum_{l=i+m+1}^{i+2m}u_l^{n} -\sum_{l=i-2m+1}^{i-m}u_l^{n}=3\frac{\partial u}{\partial x}\mid_{i+\frac{1}{2}}mH +\frac{1}{8}\frac{\partial^3 u}{\partial x^3}\mid_{i+\frac{1}{2}}mH(10m^2-1)h^2+O(H^4). \end{array}$$

Further, we have that

1mH[54(l=i+1i+mulnl=im+1iuln)112(l=i+m+1i+2mulnl=i2m+1imuln)]=unxi+121243unx3i+12h2+O(H4).$$\begin{array}{} \frac{1}{mH}[\frac{5}{4}(\sum_{l=i+1}^{i+m}u_l^{n} -\sum_{l=i-m+1}^{i}u_l^{n})-\frac{1}{12}(\sum_{l=i+m+1}^{i+2m}u_l^{n} -\sum_{l=i-2m+1}^{i-m}u_l^{n})]\\ \qquad=\frac{\partial u^n}{\partial x}\mid_{i+\frac{1}{2}} -\frac{1}{24}\frac{\partial^3 u^n}{\partial x^3}\mid_{i+\frac{1}{2}}h^2+O(H^4). \end{array}$$

Applying the Taylor format, it holds that

uxi+12=δxui+12nh2243ux3i+12+O(h4),3ux3i+12=δx3ui+12n+O(h2).$$\begin{array}{} \frac{\partial u}{\partial x}\mid_{i+\frac{1}{2}}=\delta_{x} u_{i+\frac{1}{2}}^n-\frac{h^2}{24}\frac{\partial^3 u}{\partial x^3}\mid_{i+\frac{1}{2}}+O(h^4),\quad \frac{\partial^3 u}{\partial x^3}\mid_{i+\frac{1}{2}}=\delta^3_{x} u_{i+\frac{1}{2}}^n+O(h^2). \end{array}$$

Substituting (23) into (24), we can obtain (16). Similarly, it leads (17).

Time second-order and space fourth-order splitting conserved DDM for 2-dimension parabolic equations
2-dimension parabolic problem

The two-dimensional parabolic equations are considered as

utx(a1(x,y)ux)y(a2(x,y)uy)=f(x,y,t),(x,y,t)Ω×(0,T],un=0,(x,y,t)Ω×(0,T],u(x,y,0)=u0(x,y),(x,y)Ω,$$\begin{array}{} \left\{ \begin{array}{} \frac{\partial u}{\partial t}-\frac{\partial }{\partial x}(a^1(x,y)\frac{\partial u}{\partial x}) -\frac{ \partial }{\partial y} (a^2(x,y)\frac{\partial u}{\partial y})=f(x,y,t), \quad (x,y,t) \in \Omega\times(0,\,T],\\ \nabla u\cdot \vec{n}=0, \quad (x,y,t) \in \partial\,\Omega\times(0,\,T],\\ u{(x,y,0)}=u_0{(x,y)}, \quad (x,y)\in{\Omega}, \end{array} \right. \end{array}$$

where Ω = [0, 1] × [0, 1], a1(x, y) and a2(x, y) are the diffusion coefficients. Assume that 0 < a0 ≤ {a1(x, y), a2(x, y)} ≤ a1 are the known smooth functions. Define hx = 1I$\begin{array}{} \frac{1}{I} \end{array}$ and hy = 1J$\begin{array}{} \frac{1}{J} \end{array}$ be spatial step size along x-directional and y-directional, respectively. I and J are the positive integers. Introducing the following staggered meshes as

xi+12=ihx,i=0,1,,I,xi=(i+12)hx,i=0,1,,I1,yj+12=jhy,j=0,1,,J,yj=(j+12)hy,j=0,1,,J1.$$\begin{array}{} x_{i+\frac{1}{2}}=i h_x,\, i=0,1,\cdots,I,\quad x_{i}=(i+\frac{1}{2}) h_x, \, i=0,1,\cdots, I-1, \\ y_{j+\frac{1}{2}}=j h_y, \, j=0,1,\cdots, J, \quad y_{j}=(j+\frac{1}{2})h_y, \, j=0,1,\cdots,J-1. \end{array}$$

For simplicity, we assume that a1(x, y) and a2(x, y) are constants and f ≡ 0 as below, when a1(x, y) and a2(x, y) are variable coefficients, the schemes are modified as similar as 1-dimension problem.

Conserved splitting domain decomposition scheme

For simplicity of description, we assume that the domain Ω be divided into 2 × 2 block sub-domains (see Fig. 1). Let {(xi+12,yj)}and{(xi,yj+12)}$\begin{array}{} \{(x_{i+\frac{1}{2}},y_j)\}~~ \text{and}~~ \{(x_i,y_{j+\frac{1}{2}})\} \end{array}$ be the nodes for the fluxes while {(xi, yj)} are the nodes used for the solution. The line Γ1x:x=xi1+12$\begin{array}{} \Gamma^x_1: x=x_{i_1+\frac{1}{2}} \end{array}$ is the interface of Ω1,q and Ω2,q, q = 1, 2, where i1 denotes the mesh point index of interface location of Γ1x$\begin{array}{} \Gamma ^x_1 \end{array}$ along x-direction. The line Γ1y:y=yj1+12$\begin{array}{} \Gamma^{y}_1: y=y_{j_1+\frac{1}{2}} \end{array}$ is the interface of sub-domains Ωp,1 and Ωp,2, p = 1, 2, and j1 denotes the mesh point index of interface location of Γ1y$\begin{array}{} \Gamma ^y_1 \end{array}$ along y-direction.

Fig. 1

The staggered meshes in 2 × 2 sub-domains: ∘, *, ⋄ - the points of (i, j), (i+12,j),(i,j+12)$\begin{array}{} (i+\frac{1}{2}, j), (i, j+\frac{1}{2}) \end{array}$

Let qi+12,jx=a1δxUi+12,j,qi,j+12y=a2δyUi,j+12$\begin{array}{} q^{x}_{i+\frac{1}{2},j}=a^1 \delta_{x} U_{i+\frac{1}{2},j},~ q^{y}_{i,j+\frac{1}{2}}=a^2 \delta_{y} U_{i,j+\frac{1}{2}} \end{array}$ , and

q~i+12,jx=a1m1H1[54(l=i+1i+mUl,jl=im+1iUl,j)112(l=i+m+1i+2mUl,jl=i2m+1imUl,j)]+hx212a1δx3Ui+12,j,q~i,j+12y=a2m2H2[54(l=i+1i+mUi,ll=im+1iUi,l)112(l=i+m+1i+2mUi,ll=i2m+1imUi,l)]+hy212a2δy3Ui,j+12,$$\begin{array}{} \displaystyle \tilde q^{x}_{i+\frac{1}{2},j}=\frac{a^1}{m_1H_1}[\frac{5}{4}(\sum_{l=i+1}^{i+m}U_{l,j} -\sum_{l=i-m+1}^{i}U_{l,j})-\frac{1}{12}(\sum_{l=i+m+1}^{i+2m}U_{l,j} -\sum_{l=i-2m+1}^{i-m}U_{l,j})]+\frac{{h_x}^2}{12}a^1\delta^3_{x} U_{i+\frac{1}{2},j}, \\\displaystyle~~ \tilde q^{y}_{i,j+\frac{1}{2}}=\frac{a^2}{m_2H_2}[\frac{5}{4}(\sum_{l=i+1}^{i+m}U_{i,l} -\sum_{l=i-m+1}^{i}U_{i,l})-\frac{1}{12}(\sum_{l=i+m+1}^{i+2m}U_{i,l} -\sum_{l=i-2m+1}^{i-m}U_{i,l})]+\frac{{h_y}^2}{12}a^2\delta^3_{y} U_{i,j+\frac{1}{2}}, \end{array}$$

where H1 = m1hx, H2 = m2hy.

Now we describe the algorithm of our time second-order and space fourth-order conserved splitting domain decomposition scheme on Ω1,1 at each time [tn−1, tn] in details as

Along x-direction.

The intermediate interface fluxes {Qi1+12,jx,n}$\begin{array}{} \{{Q}_{i_1+\frac{1}{2},j}^{x,{n^{*}}}\} \end{array}$ on the interface are firstly computed by

Qi1+12,jx,n=qˇi1+12,jx,nhx212Δhxqˇi1+12,jx,n,$$\begin{array}{} \displaystyle Q^{x,n^{*}}_{i_1+\frac{1}{2},j}=\check q^{x,n^{*}}_{i_1+\frac{1}{2},j}-\frac{{h_x}^2}{12}\Delta_{h_x} \check q^{x,n^{*}}_{i_1+\frac{1}{2},j}, \end{array}$$

where qˇi1+12,jx,n$\begin{array}{} \check q^{x,n^{*}}_{i_1+\frac{1}{2},j} \end{array}$ are computed by the time extrapolation and local multi-point weighted average scheme as follows,

qˇi1+12,jx,n=14(5q~i1+12,jx,1q~i1+12,jx,0),n=1,2q~i1+12,jx,nq~i1+12,jx,n1,n2.$$\begin{array}{} \displaystyle \check q^{x,n^{*}}_{i_1+\frac{1}{2},j}=\left\{ \begin{array}{ll} \frac{1}{4}(5\tilde q^{x,1}_{i_1+\frac{1}{2},j}-\tilde q^{x,0}_{i_1+\frac{1}{2},j}),\quad n=1,\\ 2\tilde q^{x,n}_{i_1+\frac{1}{2},j}-\tilde q^{x,{n-1}^{**}}_{i_1+\frac{1}{2},j},\quad n\geq2. \end{array} \right. \end{array}$$

The intermediate variables {Ui,jn}$\begin{array}{} \{U^{n^{*}}_{i,j}\} \end{array}$ are computed by the x-directional splitting implicit scheme.

Ui,jnUi,jnτ=14(δxQi,jx,n+δxQi,jx,n),(xi,yj)Ω1,1,Qi+12,jx,n=qi+12,jx,nhx212Δhxqi+12,jx,n,(xi,yj)Ω1,1,Qi+12,jx,n=qi+12,jx,nhx212Δhxqi+12,jx,n,i=1,2,i12,Qi+12,jx,n=qi+12,jx,nhx212Δhxqi+12,jx,n+112(qi1+12,jx,nqˇi1+12,jx,n),i=i11.$$\begin{array}{} \displaystyle \left\{ \begin{array}{ll} \frac{U^{n^{*}}_{i,j}-U^{n}_{i,j}}{\tau}=\frac{1}{4}(\delta_x Q_{i,j}^{x,{n^{*}}}+\delta_x Q_{i,j}^{x,{n}}), \quad (x_i,y_j)\in \Omega_{1,1}, \\ Q^{x,n}_{i+\frac{1}{2},j}=q^{x,n}_{i+\frac{1}{2},j} -\frac{{h_x}^2}{12}\Delta_{h_x} q^{x,n}_{i+\frac{1}{2},j},\quad (x_i,y_j)\in \Omega_{1,1}, \\ Q^{x,n^{*}}_{i+\frac{1}{2},j}=q^{x,n^{*}}_{i+\frac{1}{2},j} -\frac{{h_x}^2}{12}\Delta_{h_x} q^{x,n^{*}}_{i+\frac{1}{2},j},\quad i=1,2,\cdots i_1-2,\\ Q^{x,n^{*}}_{i+\frac{1}{2},j}=q^{x,n^{*}}_{i+\frac{1}{2},j}-\frac{{h_x}^2}{12} \Delta_{h_x} q^{x,n^{*}}_{i+\frac{1}{2},j}+\frac{1}{12}(q^{x,n^{*}}_{i_1+\frac{1}{2},j}-\check q^{x,n^{*}}_{i_1+\frac{1}{2},j}),\quad i=i_1-1. \end{array} \right. \end{array}$$

Along y-direction.

The interface fluxes {Qi,j1+12y,n}$\begin{array}{} \{{Q}_{i,j_1+\frac{1}{2}}^{y,{n^{**}}}\} \end{array}$ on interface are computed explicitly by

Qi,j1+12y,n=qˇi,j1+12y,nhy212Δhyqˇi,j1+12y,n,$$\begin{array}{} \displaystyle Q^{y,n^{**}}_{i,j_1+\frac{1}{2}}=\check q^{y,n^{**}}_{i,j_1+\frac{1}{2}}-\frac{{h_y}^2}{12}\Delta_{h_y} \check q^{y,n^{**}}_{i,j_1+\frac{1}{2}}, \end{array}$$

and define qˇi,j1+12y,n=3q~i,j1+12y,n2q~i,j1+12,jy,n$\begin{array}{} \check q^{y,n^{**}}_{i,j_1+\frac{1}{2}}=3\tilde q^{y,n^*}_{i,j_1+\frac{1}{2}}-2\tilde q^{y,n}_{i,j_1+\frac{1}{2},j} \end{array}$.

The numerical solutions {Ui,j}$\begin{array}{} \{U_{i,j}^{**}\} \end{array}$ are solved by the y-directional splitting implicit scheme.

Ui,jnUi,jnτ=12(δyQi,jy,n+δyQi,jy,n)(xi,yj)Ω1,1,Qi,j+12y,n=qi,j+12y,nhy212Δhyqi,j+12y,n,(xi,yj)Ω1,1,Qi,j+12y,n=qi,j+12y,nhy212Δhyqi,j+12y,n,j=1,2,,j12Qi,j+12y,n=qi,j+12y,nhy212Δhyqi,j+12y,n+112(qi,j1+12y,nqˇi,j1+12y,n),j=j11.$$\begin{array}{} \displaystyle \left\{ \begin{array}{ll} \frac{U^{n^{**}}_{i,j}-U_{i,j}^{n^{*}}}{\tau} =\frac{1}{2}(\delta_y Q_{i,j}^{y,n^{**}}+\delta_y Q_{i,j}^{y,n^{*}}) \quad (x_i,y_j)\in\Omega_{1,1},\\ Q^{y,n^*}_{i,j+\frac{1}{2}}=q^{y,n^*}_{i,j+\frac{1}{2}} -\frac{{h_y}^2}{12}\Delta_{h_y} q^{y,n^*}_{i,j+\frac{1}{2}},\quad (x_i,y_j)\in\Omega_{1,1},\\ Q^{y,n^{**}}_{i,j+\frac{1}{2}}=q^{y,n^{**}}_{i,j+\frac{1}{2}} -\frac{{h_y}^2}{12}\Delta_{h_y} q^{y,n^{**}}_{i,j+\frac{1}{2}},\quad j=1,2,\cdots, j_1-2\\ Q^{y,n^{**}}_{i,j+\frac{1}{2}}=q^{y,n^{**}}_{i,j+\frac{1}{2}}-\frac{{h_y}^2}{12} \Delta_{h_y} q^{y,n^{**}}_{i,j+\frac{1}{2}} +\frac{1}{12}(q^{y,n^{**}}_{i,j_1+\frac{1}{2}}-\check q^{y,n^{**}}_{i,j_1+\frac{1}{2}}),\quad j=j_1-1. \end{array} \right. \end{array}$$

Along x-direction.

The intermediate interface fluxes {Qi1+12,jx,n+1}$\begin{array}{} \{{Q}_{i_1+\frac{1}{2},j}^{x,{n+1}}\} \end{array}$ on the interface are re-computed explicitly as

Qi1+12,jx,n+1=qˇi1+12,jx,n+1hx212Δhxqˇi1+12,jx,n+1,$$\begin{array}{} \displaystyle Q^{x,n+1}_{i_1+\frac{1}{2},j}=\check q^{x,n+1}_{i_1+\frac{1}{2},j}-\frac{{h_x}^2}{12}\Delta_{h_x} \check q^{x,n+1}_{i_1+\frac{1}{2},j}, \end{array}$$

where qˇi1+12,jx,n+1=12(3q~i1+12,jx,nq~i1+12,jx,n)$\begin{array}{} \check q^{x,n+1}_{i_1+\frac{1}{2},j}=\frac{1}{2}(3\tilde q^{x,n^{**}}_{i_1+\frac{1}{2},j}-\tilde q^{x,n^{*}}_{i_1+\frac{1}{2},j}) \end{array}$.

The intermediate variables {Ui,jn+1}$\begin{array}{} \{U^{n+1}_{i,j}\} \end{array}$ are computed by the x-directional splitting implicit scheme.

Ui,jn+1Ui,jnτ=14(δxQi,jx,n+1+δxQi,jx,n),(xi,yj)Ω1,1,Qi+12,jx,n=qi+12,jx,nhx212Δhxqi+12,jx,n,(xi,yj)Ω1,1,Qi+12,jx,n+1=qi+12,jx,n+1hx212Δhxqi+12,jx,n+1,i=1,2,,i12,Qi+12,jx,n+1=qi+12,jx,n+1hx212Δhxqi+12,jx,n+1+112(qi1+12,jx,n+1qˇi1+12,jx,n+1),i=i11.$$\begin{array}{} \displaystyle \left\{ \begin{array}{ll} \frac{U^{n+1}_{i,j}-U^{n^{**}}_{i,j}}{\tau}=\frac{1}{4}(\delta_x Q_{i,j}^{x,{n+1}}+\delta_x Q_{i,j}^{x,{n^{**}}}), \quad (x_i,y_j)\in \Omega_{1,1}, \\ Q^{x,n^{**}}_{i+\frac{1}{2},j}=q^{x,n^{**}}_{i+\frac{1}{2},j} -\frac{{h_x}^2}{12}\Delta_{h_x} q^{x,n^{**}}_{i+\frac{1}{2},j},\quad (x_i,y_j)\in \Omega_{1,1},\\ Q^{x,n+1}_{i+\frac{1}{2},j}=q^{x,n+1}_{i+\frac{1}{2},j} -\frac{{h_x}^2}{12}\Delta_{h_x} q^{x,n+1}_{i+\frac{1}{2},j},\quad i=1,2,\cdots, i_1-2,\\ Q^{x,n+1}_{i+\frac{1}{2},j}=q^{x,n+1}_{i+\frac{1}{2},j}-\frac{{h_x}^2}{12} \Delta_{h_x} q^{x,n+1}_{i+\frac{1}{2},j}+\frac{1}{12}(q^{x,n+1}_{i_1+\frac{1}{2},j} -\check q^{x,n+1}_{i_1+\frac{1}{2},j}),\quad i=i_1-1. \end{array} \right. \end{array}$$

The boundary conditions are approximated by

Q12,jx=0,Qi,12y=0,{(x12,yj),(xi,y12)}Ωh,$$\begin{array}{} \displaystyle Q_{\frac{1}{2},j}^{x}=0,\, Q_{i,\frac{1}{2}}^{y}=0,\, \{(x_{\frac{1}{2}},y_j), (x_i,y_{\frac{1}{2}}) \}\in\partial\Omega_h, \end{array}$$

The initial values are computed by Ui,j0$\begin{array}{} U_{i,j}^0 \end{array}$ = u0(xi, yj), and the first time level values {Ui,j1}$\begin{array}{} \{U^{1}_{i,j}\} \end{array}$ are need to compute by splitting scheme.

Remark 1

The conserved splitting domain decomposition scheme (28)-(35) is proposed over block-divided domain decompositions for solving 2-dimension parabolic equations. The three steps are used to compute the solutions{Ui,jn+1}$\begin{array}{} \{U^{n+1}_{i,j}\} \end{array}$at each time. At Step 1 (alongx-direction), it leads to symmetric and penta-diagonal matrix systems of{Ui,jn+1}$\begin{array}{} \{U^{n+1}_{i,j}\} \end{array}$over Ω1,1by substituting the intermediate fluxes{Qi+12,jx,n},{Qi1+12,jx,n}and{Qi+12,jx,n}$\begin{array}{} \{Q^{x,n}_{i+\frac{1}{2},j}\},~ \{Q^{x,n^*}_{i_1+\frac{1}{2},j}\}~~ and ~~\{Q^{x,n^*}_{i+\frac{1}{2},j}\} \end{array}$into the first equation of (30), which is solved by Thomas method [12]. Similarly, we can obtain{Ui,j}$\begin{array}{} \{U^{**}_{i,j}\} \end{array}$along y-direction and{Ui,jn+1}$\begin{array}{} \{U^{n+1}_{i,j}\} \end{array}$alongx-direction again.

Theorem 3

(Mass conservation)The scheme (28) - (35) preserves the global mass conservation over the whole domain, i.e.,

i=1Ij=1JUi,jn+1hxhy=i=1Ij=1JUi,jnhxhy,n=0,2,,M1.$$\begin{array}{} \sum_{i=1}^{I}\sum_{j=1}^{J}U_{i,j}^{n+1}h_xh_y =\sum_{i=1}^{I}\sum_{j=1}^{J}U_{i,j}^{n}h_xh_y,\quad\forall n=0, 2,\cdots, M-1. \end{array}$$

Proof

Similar proof as (12), we can obtain the mass along x-direction in Step 1,

i=1Ij=1JUi,jnhxhy=i=1Ij=1JUi,jnhxhy,$$\begin{array}{} \sum_{i=1}^{I}\sum_{j=1}^{J}U^{n^{*}}_{i,j}h_xh_y =\sum_{i=1}^{I}\sum_{j=1}^{J}U_{i,j}^{n}h_xh_y, \end{array}$$

along y-direction in Step 2,

i=1Ij=1JUi,jnhxhy=i=1Ij=1JUi,jnhxhy,$$\begin{array}{} \sum_{i=1}^{I}\sum_{j=1}^{J}U^{n^{**}}_{i,j}h_xh_y =\sum_{i=1}^{I}\sum_{j=1}^{J}U_{i,j}^{n^{*}}h_xh_y, \end{array}$$

and along x-direction in Step 3,

i=1Ij=1JUi,jn+1hxhy=i=1Ij=1JUi,jnhxhy.$$\begin{array}{} \sum_{i=1}^{I}\sum_{j=1}^{J}U^{n+1}_{i,j}h_xh_y =\sum_{i=1}^{I}\sum_{j=1}^{J}U_{i,j}^{n^{**}}h_xh_y. \end{array}$$

Adding (37), (38) and (39). We complete the proof.

Numerical experiments

In the section, we present numerical experiments to illustrate the performance of the scheme such as mass conservation, orders of convergence and stability. The domains Ω = [0, 1] × [0, 1] and are divided into 2 × 2 sub-domains. Take uniform mesh steps hx = hy = h and m = m1 = m2. Let u(x, y, tn) be the exact solution and {Ui,jn}$\begin{array}{} \{U_{i,j}^n\} \end{array}$ be the approximate solution of the problem. Define solution errors in discrete L2 norm as

ehn=hi,j(u(xi,yj,tn)Ui,jn)2.$$\begin{array}{} e^n_h = h\sqrt{ \sum_{i,j} (u(x_i,y_j,t^n)- U_{i,j}^n)^2}. \end{array}$$

and mass errors MassErr = |Massn − Mass0|, where Mass0 = i,jUi,j0h2$\begin{array}{} \sum_{i,j}{U}^0_{i,j}h^2 \end{array}$ and

Massn=i,jUi,jnh2+τl=1ni,jfi,jlh2,$$\begin{array}{} \mathrm{Mass_{n}}=\sum_{i,j}{U}_{i,j}^{n}h^2+\tau\sum_{l=1}^n\sum_{i,j}f_{i,j}^{l}h^2, \end{array}$$

Assume that D = a1 = a2, and the the exact solution of Eqns. (25) is u = e−22t cosπxcos πy. Table 1 presents the errors and the order of convergence in space step at t = 0.1. The space step size h is selected from 1/10 to 1/80, while the time step size is taken as τ = 1/10000 and m = 2.

Errors and ratios of convergence in space for different diffusion D.

Dh1/101/201/401/80
1E-2eh1.0572E-56.8466E-72.9351E-89.9707E-10
ratio-3.94874.54394.8796
1E-1eh4.6522E-51.7552E-66.7088E-82.9600E-9
ratio-4.72824.70944.5024
1eh4.2444E-51.7928E-68.0280E-81.5923E-9
ratio-4.56534.48105.6559

The time order of convergence of the scheme at time t = 0.1 is presented in Table 2. Taking τ = 0.1h2 and D = 1E − 2, 1E − 1, D = 1.

Errors and ratios of convergence in time for different diffusion D.

Dτ1/10001/40001/90001/16000
1E-2eh3.3475E-51.6835E-51.1157E-58.3407E-6
ratio-1.96952.21112.3563
1E-1eh4.6382E-51.7548E-62.5642E-76.7091E-8
ratio-2.36212.37172.3303
1eh4.2394E-51.7795E-62.9232E-78.3107E-8
ratio-2.28722.22732.1860

From Table 1 and 2, we can see clearly that our scheme are of fourth-order convergence in spatial step and second-order convergence in time step for the cases of different diffusions.

Take the space step h = 1/40 and the time step τ from 1/800 to 1/2000 and m = 3 in Table 3. It is clear that our scheme is conserved for the cases of different diffusions and different time step, since the errors of mass have reached the machine accuracy 10−17.

Errors and mass errors for different diffusion D and different τ.

τD0.010.10.51
1/1000eh1.7193E-73.1160E-72.7226E-72.7227E-7
MassErr2.9837E-181.1241E-174.0246E-184.2986E-17
1/2000eh1.7211E-73.0987E-73.1648E-71.4113E-7
MassErr3.7401E-172.6368E-172.3835E-174.1113E-18
1/3000eh1.7218E-73.0962E-73.2929E-171.8791E-7
MassErr3.1850E-174.4409E-174.4548E-176.9042E-18
1/4000eh1.7221-73.0956E-73.3409E-72.0642E-7
MassErr4.8503-171.1796E-182.4876E-171.7781E-17

The effect of m on the stability of our scheme for the solutions is presented in Table 4 at t = 0.01. Take D = 1, r = τh2$\begin{array}{} \frac{\tau}{h^2} \end{array}$ = 2 and h = 1/200. From Table 4, we can find that when r = 2, our scheme is still stable, conservative and has very good accurate results by increasing properly the value of m ≥ 5.

The effect of m on the stability.

rm2351020
2eh4.2699E+193.2818E+021.5482E-61.6600E-82.5564E-7
MassErr1.4909E+026.2177E-168.2406E-189.7145E-192.0761E-17

In Figure 2, we take h = 1/100, τ = 1/10000, D = 1, and m = 5. From the contour and surface plots of concentration, it is clear that the shape of solution moves smoothly without any numerical oscillation.

Fig. 2

The numerical simulation for heat propagation.

Conclusion

In this paper, the time second-order and space fourth-order conserved splitting domain decomposition scheme is developed for solving 2-dimension parabolic equations. In our splitting domain decomposition method, the time extrapolation and local multi-point weighted average schemes are used to approximate the interface fluxes on interfaces of sub-domains, while the interior solutions are computed by the splitting high-order implicit schemes in sub-domains. The analysis of stability and convergence will be studied in further work.

eISSN:
2444-8656
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, andere, Mathematik, Angewandte Mathematik, Allgemeines, Physik