Zitieren

Qian H, Li J, Sun L, Chen W, Sheng GD, Liu W, Fu Z. Combined effect of copper and cadmium on Chlorella vulgaris growth and photosynthesis-related gene transcription. Aquat Toxicol 2009;94:56-61.10.1016/j.aquatox.2009.05.014Search in Google Scholar

Wilde KL, Stauber JL, Markich SJ, Franklin NM, Brown PL. The effect of pH on the uptake and toxicity of copper and zinc in a tropical freshwater alga (Chlorella sp.). Arch Environ Contam Toxicol 2006; 51:174-85.10.1007/s00244-004-0256-0Search in Google Scholar

Sanita di Toppi L, Gabbrielli R. Response to cadmium in higher plants. Environ Exp Bot 1999;41:105-30.10.1016/S0098-8472(98)00058-6Search in Google Scholar

Jin YH, Clark AB, Slebos RJC, Al-Refai H, Taylor JA, Kunkel TA, Resnick MA, Gordenin DA. Cadmium is a mutagen that acts by inhibiting mismatch repair. Nat Genet 2003;34:326-9.10.1038/ng1172Search in Google Scholar

Rodríguez-Serrano M, Romero-Puertas MC, Zabalza A, Corpas FJ, Gómez M, del Río LA, Sandalio LM. Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environ 2006;29:1532-44.10.1111/j.1365-3040.2006.01531.xSearch in Google Scholar

Gichner T, Patková Z, Száková J, Demnerová K. Cadmium induces DNA damage in tobacco roots, but no DNA damage, somatic mutations or homologous recombination in tobacco leaves. Mutat Res 2004;559:49-57.10.1016/j.mrgentox.2003.12.008Search in Google Scholar

Ünyayar S, Celik A, Cekic OF, Gozel A. Cadmium induced genotoxicity, cytotoxicity and lipid peroxidation in Allium sativum and Vicia faba. Mutagenesis 2006;21:77-81.10.1093/mutage/gel001Search in Google Scholar

Chugh LK, Sawhney SK. Photosynthetic activities of Pisum sativum seedlings grown in presence of cadmium. Plant Physiol Biochem 1999;37:297-303.10.1016/S0981-9428(99)80028-XSearch in Google Scholar

Prasad SM, Dwivedi R, Zeeshan M, Singh R. UV-B and cadmium induced changes in pigments, photosynthetic electron transport activity, antioxidant levels and antioxidative enzyme activities of Riccia sp. Acta Physiol Plant 2004;26:423-30.10.1007/s11738-004-0033-8Search in Google Scholar

Welch RM. Micronutrient nutrition of plants. Crit Rev Plant Sci 1995;14:49-82.10.1080/07352689509701922Search in Google Scholar

Frankart C, Eullaffroy P, Vernet G. Photosynthetic responses of Lemna minor exposed to xenobiotics, copper, and their combinations. Ecotoxicol Environ Saf 2002;53:439-45.10.1016/S0147-6513(02)00003-9Search in Google Scholar

Schützendübel A, Polle A. Plant responses to abiotic stresses: heavy metal induced oxidative stress and protection by mycorrhization. J Exp Bot 2002;53:1351-65.10.1093/jexbot/53.372.1351Search in Google Scholar

Razinger J, Dermastia M, Drinovec L, Drobne D, Zrimec A, Dolenc Koce J. Antioxidative responses of duckweed (Lemna minor L.) to short-term copper exposure. Environ Sci Pollut Res 2007;14:194-201.10.1065/espr2006.11.364Search in Google Scholar

Wang WC, Freemark K. The Use of plants for environmental monitoring and assessment. Ecotoxicol Environ Saf 1995;30:289-301.10.1006/eesa.1995.1033Search in Google Scholar

Blinova I. Use of freshwater algae and duckweeds for phytotoxicity testing. Environ Toxicol 2004;19:425-8.10.1002/tox.20042Search in Google Scholar

Drost W, Matzke M, Backhaus T. Heavy metal toxicity to Lemna minor: studies on the time dependence of growth inhibition and the recovery after exposure. Chemosphere 2007;67:36-43.10.1016/j.chemosphere.2006.10.018Search in Google Scholar

Mohan BS, Hosetti BB. Potential phytotoxicity of lead and cadmium to Lemna minor grown in sewage stabilization ponds. Environ Pollut 1997;98:233-8.10.1016/S0269-7491(97)00125-5Search in Google Scholar

Kara Y. Bioaccumulation of copper from contaminated wasterwater by using Lemna minor. Bull Environ Contam Toxicol 2004;72:467-71.10.1007/s00128-004-0269-4Search in Google Scholar

Maine MA, Duarte MV, Sune NL. Cadmium uptake by floating macrophytes. Water Res 2001;35:2629-34.10.1016/S0043-1354(00)00557-1Search in Google Scholar

International Organization for Standardization (ISO). Determination of the toxic effect of water constituents and wastewater on duckweed (Lemna minor) - Duckweed growth inhibition test, ISO norm 20079; 2006.Search in Google Scholar

Pirson A, Seidel F. Zell- und stoffwechselphysiologiche Untersuchungen an der Wurzel von Lemna minor unter besonderer Berücksichtigung von Kalium- und Calciummangel [Cell metabolism and physiology in Lemna minor root deprived of potassium and calcium, in German]. Planta 1950;38:431-73.10.1007/BF01928941Search in Google Scholar

International Organization for Standardization (ISO). Water quality - determination of the toxic effect of water constituents and waste water to duckweed (Lemna minor) - Duckweed growth inhibition test. ISO TC 147/SC 5/WG 5, 2004.Search in Google Scholar

Heath RL, Packer L. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 1968;125:189-98.Search in Google Scholar

Levine RL, Williams JA, Stadtman ER, Shacter E. Carbonyl assay for determination of oxidatively modified proteins. Method Enzymol 1994;233:346-57.10.1016/S0076-6879(94)33040-9Search in Google Scholar

Aebi M. Catalase in vitro. Method Enzymol 1984;105:121-6.10.1016/S0076-6879(84)05016-3Search in Google Scholar

Woodbury WA, Spencer K, Stahlmann MA. An improved procedure using ferricyanide for detecting catalase isozymes. Anal Biochem 1971;44:301-5.10.1016/0003-2697(71)90375-7Search in Google Scholar

Chance B, Maehly AC. Assay of catalases and peroxidases. In: Colowick SP, Kaplan NO, editors. Methods in enzymology. New York (NY): Academic Press; 1955. p. 764-75.10.1016/S0076-6879(55)02300-8Search in Google Scholar

Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976;72:248-54.10.1016/0003-2697(76)90527-3Search in Google Scholar

Tkalec M, Prebeg T, Roje V, Pevalek-Kozlina B, Ljubešić N. Cadmium-induced responses in duckweed Lemna minor L. Acta Physiol Plant 2008;30:881-90.10.1007/s11738-008-0194-ySearch in Google Scholar

Verkleij JAC, Golan-Goldhirshb A, Antosiewiszc DA, Schwitzguébel J-P, Schrödere P. Dualities in plant tolerance to pollutants and their uptake and translocation to the upper plant parts. Environ Exp Bot 2009;67:10-22.10.1016/j.envexpbot.2009.05.009Search in Google Scholar

Semsari M, Couderchet M. Toxicity and removal of heavy metals (cadmium, copper, and zinc) by Lemna gibba. Ecotoxicol Environ Saf 2009;72:1774-80.10.1016/j.ecoenv.2009.05.00419505721Search in Google Scholar

Kwan KHM, Smith S. Some aspects of the kinetics of cadmium uptake by fronds of Lemna minor L. New Phytol 1991;117:91-102.10.1111/j.1469-8137.1991.tb00948.xSearch in Google Scholar

Mishra VK, Tripathi BD, Concurrent removal and accumulation of heavy metals by three aquatic macrophytes. Bioresource Technol 2008;99:7091-7.10.1016/j.biortech.2008.01.00218296043Search in Google Scholar

Yizong H, Ying H, Yunxia L. Heavy metal accumulation in iron plaque and growth of rice plants upon exposure to single and combined contamination by copper, cadmium and lead. Acta Ecol Sin 2009;29:320-6.10.1016/j.chnaes.2009.09.011Search in Google Scholar

An YJ, Kim YM, Kwon TI, Jeong SW. Combined effect of copper, cadmium, and lead upon Cucumis sativus growth and bioaccumulation. Sci Total Environ 2004;326:85-93.10.1016/j.scitotenv.2004.01.002Search in Google Scholar

Singh S, Eapen S, D'Souza SF. Cadmium accumulation and its influence on lipid peroxidation and antioxidative system in an aquatic plant, Bacopa monnieri L. Chemosphere 2006;62:233-46.10.1016/j.chemosphere.2005.05.017Search in Google Scholar

Cho U-H, Seo N-H. Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Sci 2005;168:113-20.10.1016/j.plantsci.2004.07.021Search in Google Scholar

Hou W, Chen X, Song G, Wang Q, Chang CC. Effects of copper and cadmium on heavy metal polluted waterbody restoration by duckweed (Lemna minor). Plant Physiol Biochem 2007;45:62-9.10.1016/j.plaphy.2006.12.005Search in Google Scholar

Stadtman ER. Protein oxidation and aging. Free Radic Res 2006;40:1250-8.10.1080/10715760600918142Search in Google Scholar

Valverde M, Trejo C, Rojas E. Is the capcity of lead acetate and cadmium chloride to induce genotoxic damage due to direct-metal interaction? Mutagenesis 2001;16:265-70.10.1093/mutage/16.3.265Search in Google Scholar

Pincheiraa J, López-Sáez JF, Carrerab P, Navarrete MH, de la Torre C. Effect of caffeine on in vivo processing of alkylated bases in proliferating plant cells. Cell Biol Int 2003;27:837-43.10.1016/S1065-6995(03)00169-0Search in Google Scholar

Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, van Montagu M, Inze D, van Camp W. Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO J 1997;16:4806-16.10.1093/emboj/16.16.4806Search in Google Scholar

Verma S, Dubey RS. Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 2003;164:645-55.10.1016/S0168-9452(03)00022-0Search in Google Scholar

Dazy M, Masfaraud JF, Férard JF. Induction of oxidative stress biomarkers associated with heavy metal stress in Fontinalis antipyretica Hedw. Chemosphere 2009;75:297-302.10.1016/j.chemosphere.2008.12.04519181363Search in Google Scholar

Yeh C-M, Chien P-S, Huang H-J. Distinct signalling pathways for induction of MAP kinase activities by cadmium and copper in rice roots. J Exp Bot 2007;58:659-71.Search in Google Scholar

ISSN:
0004-1254
Sprachen:
Englisch, Slovenian
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Medizin, Vorklinische Medizin, Grundlagenmedizin, andere