Uneingeschränkter Zugang

cis- and trans- regulation controls of human meiotic recombination at a hotspot


Zitieren

1. Jeffreys AJ, Ritchie A, Neumann R. High resolution analysis of haplotypeSearch in Google Scholar

diversity and meiotic crossover in the human TAP2 recombinationSearch in Google Scholar

hotspot. Hum Mol Genet 2000; 9:725-331074997910.1093/hmg/9.5.725Search in Google Scholar

2. Jeffreys AJ, Murray J, Neumann R. High-resolution mapping ofSearch in Google Scholar

crossovers in human sperm defines a minisatellite-associated recombination9734365Search in Google Scholar

hotspot. Mol Cell 1998; 2:267-73973436510.1016/S1097-2765(00)80138-0Search in Google Scholar

3. Jeffreys AJ, Neumann R. Reciprocal crossover asymmetry andSearch in Google Scholar

meiotic drive in a human recombination hot spot. Nat GenetSearch in Google Scholar

2002; 31:267-71Search in Google Scholar

4. Myers S, Freeman C, Auton A, Donnelly P, McVean G. A commonSearch in Google Scholar

sequence motif associated with recombination hot spots and genomeSearch in Google Scholar

instability in humans. Nat Genet 2008; 40:1124-910.1038/ng.21319165926Search in Google Scholar

5. Myers S, Bottolo Leonardo, Freeman C, McVean G, Donnelly P. ASearch in Google Scholar

fine-scale map of recombination rates and hotspots across theSearch in Google Scholar

human genome Science 2005; 310: 321-32410.1126/science.111719616224025Search in Google Scholar

6. Baudat F, et al. PRDM9 is a major determinant of meiotic recombinationSearch in Google Scholar

hotspots in humans and mice. Science 2010; 327:836-840.10.1126/science.1183439429590220044539Search in Google Scholar

7. Myers S, et al. Drive against hotspot motifs in primates implicatesSearch in Google Scholar

the PRDM9 gene in meiotic recombination. Science 2010Search in Google Scholar

327:876-879.Search in Google Scholar

8. Parvanov ED, Petkov PM, Paigen K. Prdm9 controls activation ofSearch in Google Scholar

mammalian recombination hotspots. Science 2010; 327:835.10.1126/science.1181495282145120044538Search in Google Scholar

9. Hayashi K, Yoshida K, Matsul Y. A histone H3 methyltransferaseSearch in Google Scholar

controls epigenetic events required for meiotic prophase. Nature16292313Search in Google Scholar

2005; 438:374-8Search in Google Scholar

10. Berg IL, Neumann R, Lam KW, Sarbajna S, Odenthal-Hesse L, MaySearch in Google Scholar

CA, Jeffreys AJ PRDM9 variation strongly influences recombinationSearch in Google Scholar

hot-spot activity and meiotic instability in humans. Nat Genet20818382Search in Google Scholar

2010; 42:859-63Search in Google Scholar

11. Berg IL, Neumann R, Sarbajna S, Odenthal-Hesse L, Butler NJ, JeffreysSearch in Google Scholar

AJ. Variants of the protein PRDM9 differentially regulate a setSearch in Google Scholar

human meiotic recombination hotspots highly active in African21750151Search in Google Scholar

populations. Proc Natl Acad Sci USA 2011; 108:12378-8310.1073/pnas.1109531108314572021750151Search in Google Scholar

12. Maniatis N, Collins A, Xu CF, McCarthy LC, Hewett DR, TapperSearch in Google Scholar

W, Ennis S, Ke X, Morton NE. The first linkage disequilibrium (LD)Search in Google Scholar

maps: delineation of hot and cold blocks by diplotype analysis.11842208Search in Google Scholar

Proc Natl Acad Sci USA 2002; 99:2228-223310.1073/pnas.04268099912234711842208Search in Google Scholar

13. McVean GA, Myers SR, Hunt S, Deloukas P, Bentley DR, DonnellySearch in Google Scholar

P. The fine-scale structure of recombination rate variation in theSearch in Google Scholar

human genome. Science 2004 304:581-584.10.1126/science.109250015105499Search in Google Scholar

14. Kauppi L, May CA, Jeffreys AJ. Analysis of meiotic recombinationSearch in Google Scholar

products from human sperm. Methods Mol Biol 2009; 557: 323-355.Search in Google Scholar

15. Webb AJ, Berg IL, Jeffreys A. Sperm cross-over activity in regionsSearch in Google Scholar

of the human genome showing extreme breakdown of marker association.18650392Search in Google Scholar

Proc Natl Acad Sci USA 2008; 105: 10471-10476.10.1073/pnas.0804933105248323518650392Search in Google Scholar

16. Jeffreys AJ, Kauppi L, Neumann R. Intensely punctate meiotic recombinationSearch in Google Scholar

in the class II region of the major histocompatibilitySearch in Google Scholar

complex. Nat Genet 2001; 29:217-222.10.1038/ng1001-2171158630311586303Open DOISearch in Google Scholar

17. Jeffreys AJ, Neumann R. Factors influencing recombination frequencySearch in Google Scholar

and distribution in a human meiotic crossover hotspot.Search in Google Scholar

Hum Mol Genet 2005; 14:2277-8710.1093/hmg/ddi2321598769815987698Open DOISearch in Google Scholar

18. Ergoren MC (2013) Control of meiotic recombination at a humanSearch in Google Scholar

crossover hotspot. University of Leicester, Leicester, United Kingdom.Search in Google Scholar

19. Holloway K, Lawson VE, Jeffreys AJ. Allelic recombination and deSearch in Google Scholar

novo deletions in sperm in the human beta-globin gene region.16501000Search in Google Scholar

Hum Mol Genet 2006; 15:1099-111Search in Google Scholar

20. Sarbajna S, Denniff M, Jeffreys AJ, Neumann R, Soler Artigas M, Veselis A, May CA. A major recombination hotspot in the XqYqSearch in Google Scholar

preudoautosomal region gives new sights into processing of humanSearch in Google Scholar

gene conversion events. Hum Mol Genet 2012; 21:2029-382229144310.1093/hmg/dds01922291443Search in Google Scholar

21. Petes TD Meiotic recombination hot spots and cold spots. Nat RevSearch in Google Scholar

Genet 2001; 2:360-910.1038/3507207811331902Search in Google Scholar

22. May CA, Shone AC, Kalaydjieva L, Sajantila A, Jeffreys AJ. CrossoverSearch in Google Scholar

clustering and rapid decay of linkage disequilibrium in theSearch in Google Scholar

Xp/Yp pseudoautosomal gene SHOX. Nat Genet 2002 31:272-5.10.1038/ng91812089524Search in Google Scholar

23. Kauppi L, Jeffreys AJ, Keeney S. Where the crossovers are: recombinationSearch in Google Scholar

distributions in mammals. Nat Rev Genet 2004; 5:413-2410.1038/nrg134615153994Search in Google Scholar

24. Jeffreys AJ, Neumann R. The rise and fall of a human recombinationSearch in Google Scholar

hot spot. Nat Genet 2009; 41:625-91934998510.1038/ng.346267827919349985Search in Google Scholar

25. Neumann R, Jeffreys AJ. Polymorphism in the activity of humanSearch in Google Scholar

crossover hotspots independent of local DNA sequence variation.16543360Search in Google Scholar

2006; 15:1401-11.Search in Google Scholar

26. Ptak SE, Voelpel K, Przeworski M. Insights into recombination fromSearch in Google Scholar

patterns of linkage disequilibrium in humans. Genetics 2004;Search in Google Scholar

167:387-97Search in Google Scholar

27. Ardlie KG, Kruglyak L, Seielstad M. Patterns of linkage disequilibriumSearch in Google Scholar

in the human genome. Nat Rev Genet 2002; 3:299-3091196755410.1038/nrg77711967554Search in Google Scholar

28. Grey C, Clément JA, Buard J, Leblanc B, Gut I, Gut M, Duret L, deSearch in Google Scholar

Massy B. In vivo binding of PRDM9 reveals interactions with noncanonicalSearch in Google Scholar

genomic sites. Genome Res 2016; 4:580-590.Search in Google Scholar

29. Striedner Y, Schwarz T, Welte T, Futschik A, Rant U, Tiemann-BoegeSearch in Google Scholar

I. The long zinc finger domain of PRDM9 forms a highly stableSearch in Google Scholar

and long-lived complex with its DNA recognition sequenceSearch in Google Scholar

2017; 2:155-172.Search in Google Scholar

30. Ponting CP. What are the genomic drivers of the rapid evolution ofSearch in Google Scholar

PRDM9? Trends Genet 2011; 27:165-7110.1016/j.tig.2011.02.00121388701Open DOISearch in Google Scholar

eISSN:
2564-615X
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Genetik, Biotechnologie, Bioinformatik, andere