Uneingeschränkter Zugang

Implementation research as a task for subject-matter education disciplines: Co-constructive, content-related, and research-based


Zitieren

Bieber, G., Egyptien, E., Klein, G., Oechslein, K., & Pikowsky, B. (2018). Positionspapier der Lan- desinstitute und Qualitätseinrichtungen der Länder zum Transfer von Forschungswissen. Deutscher Bildungsserver https://www.ls-bw.de/site/pbs-bw-new/get/documents/KUL-TUS.Dachmandant/KULTUS/Dienststellen/ls-bw/Service/Wissenstransfer/Positionspapier_Transfer_31.10.18.pdf Search in Google Scholar

Burkhardt, H., & Schoenfeld, A. (2003). Improving educational research: Toward a more useful, more influential, and better-funded enterprise. Educational Researcher, 32(9), 3–14. https://doi.org/10.3102/0013189X03200900310.3102/0013189X032009003 Search in Google Scholar

Century, J., & Cassata, A. (2016). Implementation Research: Finding Common Ground on What, How, Why, Where, and Who. Review of Research in Education, 40(1), 169–215. https://doi.org/10.3102/0091732X16665 Search in Google Scholar

Cobb, P. & Jackson, K. (2021). An Empirically Grounded System of Supports for Improving the Quality of Mathematics Teaching on a Large Scale. Implementation and Replication Studies in Mathematics Education, 1(1), 77–110. https://doi.org/10.1163/26670127-0101000410.1163/26670127-01010004 Search in Google Scholar

Cobb, P., Jackson, K., & Dunlap Sharpe, C. (2017). Conducting Design Studies to Investigate and Support Mathematics Students’ and Teachers’ Learning. In J. Cai (Ed.), Compendium for Research in Mathematics Education (pp. 208–233). NCTM. Search in Google Scholar

Coburn, C. E. (2003). Rethinking Scale: Moving Beyond Numbers to Deep and Lasting Change. Educational Researcher, 32(6), 3−12. https://doi.org/10.3102/0013189X03200600310.3102/0013189X032006003 Search in Google Scholar

Coburn, C. E., & Penuel, W. R. (2016). Research– practice partnerships in education: Outcomes, dynamics, and open questions. Educational Researcher, 45(1), 48–54 https://doi.org/10.3102/0013189X1663175010.3102/0013189X16631750 Search in Google Scholar

Cohen, D. K., Raudenbush, S. W., & Ball, D. L. (2003). Resources, Instruction, and Research. Educational Evaluation and Policy Analysis, 25(2), 119–142. https://doi.org/10.3102/0162373702500211910.3102/01623737025002119 Search in Google Scholar

Darling-Hammond, L., Hyler, M. E., & Gardner, M. (2017). Effective teacher professional development. Learning Policy Institute.10.54300/122.311 Search in Google Scholar

Desimone, L. M. (2009). Improving impact studies of teachers’ professional development: Toward better conceptualizations and measures. Educational Researcher, 38(3), 181–200. https://doi.org/10.3102/0013189X0833114010.3102/0013189X08331140 Search in Google Scholar

Farrell, C., Penuel, W. R., Allen, A.-R., Anderson, E. R., Bohannon, A. X., Coburn, C. E., & Brown, S. L. (2022). Learning at the boundaries of research and practice: A framework for understanding research-practice partnerships. Educational Researcher, 1–12. https://doi.org/10.3102/0013189X21106907310.3102/0013189X211069073 Search in Google Scholar

Gaidoschik, M., Moser Opitz, E., Nührenbörger, M., & Rathgeb-Schnierer, E. (2021). Besondere Schwierigkeiten beim Mathematiklernen. Special Issue der Mitteilungen der Gesellschaft für Didaktik der Mathematik, 47(111S). https://ojs.didaktik-der-mathematik.de/index.php/mgdm/issue/view/46 Search in Google Scholar

Gersten, R., Chard, D. J., Jayanthi, M., Baker, S. K., Morphy, O., & Flojo, J. (2009). Mathematics instruction for students with learning disabilities: A meta-analysis of instructional components. Review of Educational Research, 79(3), 1202–1242. https://doi.org/10.3102/003465430933443110.3102/0034654309334431 Search in Google Scholar

Gräsel, C. (2010). Stichwort: Transfer und Trans- ferforschung im Bildungsbereich. Zeitschrift für Erziehungswissenschaft, 13(1), 7–20. https://doi.org/10.1007/s11618-010-0109-810.1007/s11618-010-0109-8 Search in Google Scholar

Gravemeijer, K., & Cobb, P. (2006). Design research from a learning design perspective. In J. v. d. Akker, K. Gravemeijer, S. McKenney, & N. Nieveen (Eds.), Educational design research: The design, development and evaluation of programs, processes and products (pp. 17–51). Routledge. Search in Google Scholar

Gravemeijer, K., Bruin-Muurling, G., Kraemer, J.- M., & van Stiphout, I. (2016). Shortcomings of Mathematics Education Reform in The Netherlands: A Paradigm Case? Mathematical Thinking and Learning, 18(1), 25–44. https://doi.org/10.1080/10986065.2016.11078 21 Search in Google Scholar

Jaworski, B., Chapman, O., Clark-Wilson, A., Cusi, A., Esteley, C., Goos, M., Isoda, M, Joubert, M., & Robutti, O. (2017). Mathematics Teachers Working and Learning Through Collaboration. In G. Kaiser (Ed.), Proceedings of the 13th International Congress on Mathematical Education (pp. 261-276). Springer.10.1007/978-3-319-62597-3_17 Search in Google Scholar

Karsenty, R. (2010). Nonprofessional mathematics tutoring for low-achieving students in secondary schools: A case study. Educational Studies in Mathematics, 74(1), 1–21. https://doi.org/10.1007/s10649-009-9223-z10.1007/s10649-009-9223-z Search in Google Scholar

Kieran, C., Krainer, K., & Shaughnessy, J. M. (2013). Linking research to practice: Teachers as key stakeholders in mathematics education research. In M. A. K. Clements, A. J. Bishop, C. Keitel, J. Kilpatrick, & F. K. S. Leung (Eds.), Third International Handbook of Mathematics Education (pp. 361–392). New York: Springer. Search in Google Scholar

Leibniz Association (2019). Leibniz Transfer Policy: With project examples showing the transfer of scientific findings to society, the economy and politics. https://www.leibniz-gemein-schaft.de/en/about-us/whats-new/media-centre/publications/leibniz-transfer-policy Search in Google Scholar

Lipowsky, F., & Rzejak, D. (2019). Was macht Fortbildungen für Lehrkräfte erfolgreich? – Ein Update. In B. Groot-Wilken, & R. Körber (Eds.), Nachhaltige Fortbildungen für Lehrerinnen und Lehrer: Ideen, Entwicklungen, Konzepte (pp. 15–56) Bielefeld: WBV. Search in Google Scholar

Maaß, K., & Artigue, M. (2013). Implementation of inquiry-based learning in day-to-day teaching: A synthesis. ZDM – Mathematics Education, 45(6), 779–795. https://doi.org/10.1007/s11858-013-0528-010.1007/s11858-013-0528-0 Search in Google Scholar

Maaß, K., Cobb, P., Krainer, K., & Potari, D. (2019). Different ways to implement innovative teaching approaches at scale Educational Studies in Mathematics, 102(3), 303–318. https://doi.org/10.1007/s10649-019-09920-810.1007/s10649-019-09920-8 Search in Google Scholar

Maccini, P., Mulcahy, C. A., & Wilson, M. G. (2007). A follow-up of mathematics interventions for secondary students with learning disabilities. Learning Disabilities Research & Practice, 22(1), 58–74. https://doi.org/10.1111/J.1540-5826.2007.00231.X10.1111/j.1540-5826.2007.00231.x Search in Google Scholar

Moser Opitz, E. (2007). Rechenschwäche/Dyskalkulie. Theoretische Klärungen und empirische Studien an betroffenen Schülerinnen und Schülern. Bern: Haupt. Search in Google Scholar

Moser Opitz, E., Freesemann, O., Prediger, S., Grob, U., Matull, I., & Hußmann, S. (2017). Remediation for Students with mathematics difficulties: An intervention study in middle schools. Journal of Learning Disabilities, 50(6), 724–736 https://doi.org/10.1177/002221941666832310.1177/0022219416668323 Search in Google Scholar

Penuel, W. R., & Fishman, B. J. (2012). Large-Scale Science Education Intervention Research We Can Use. Journal of Research in Science Teaching, 49(3), 281–304. https://doi.org/10.1002/tea.2100110.1002/tea.21001 Search in Google Scholar

Pinto, A., & Koichu, B. (2021). Implementation of mathematics education research as crossing the boundary between disciplined inquiry and teacher inquiry. ZDM – Mathematics Education, 53(5), 1085–1096. https://doi.org/10.1007/s11858-021-01286-710.1007/s11858-021-01286-7 Search in Google Scholar

Prediger, S. ( in press). Using and developing content-related theory elements for explaining and promoting teachers’ professional growth in collaborative groups. In H. Borko & D. Potari (Eds.), Teachers of mathematics working and learning in collaborative groups (ICMI Study). Springer. Search in Google Scholar

Prediger, S. (2023, in press). Implementation von Förderkonzepten zum Aufarbeiten von Verstehensgrundlagen: Strategien und Bedingungen aus Mathe sicher können. Mathematica Didactica, 45(1). Search in Google Scholar

Prediger, S., & Buró, S. (2021). Selbstberichtete Praktiken von Lehrkräften zu Anforderungssituationen des inklusiven Mathematikunterrichts - Eine Interviewstudie. Journal für Mathematikdi- daktik, 42(1), 187–217. https://doi.org/10.1007/s13138-020-00172-110.1007/s13138-020-00172-1 Search in Google Scholar

Prediger, S., Dröse, J., Stahnke, R., & Ademmer, C. (2022, online first). Teacher expertise for fostering at-risk students’ understanding of basic concepts: Conceptual model and evidence for growth. Journal of Mathematics Teacher Education,111(3), 399 – 422. https://doi.org/10.1007/s10857-022-09538-310.1007/s10857-022-09538-3 Search in Google Scholar

Prediger, S., Fischer, C., Selter, C., & Schöber, C. (2019). Combining material- and community- based implementation strategies for scaling up: The case of supporting low-achieving middle school students. Educational Studies in Mathematics, 102(3), 361–378. https://doi.org/10.1007/s10649-018-9835-210.1007/s10649-018-9835-2 Search in Google Scholar

Roessler, I., & Hachmeister, C.-D. (2021). Wissens- transfer als Bestandteil der Third Mission der Hochschulen. In U. Schmidt & K. Schönheim (Eds.), Transfer von Innovation und Wissen (pp. 195 – 214). Springer. https://doi.org/10.1007/978-3-658-33667-7_1110.1007/978-3-658-33667-7_11 Search in Google Scholar

Rösken-Winter, B., Stahnke, R., Prediger, S., & Gasteiger, H. (2021). Towards a research base for implementation strategies addressing mathematics teachers and facilitators. ZDM – Mathematics Education, 53(5), 1007–1019. https://doi.org/10.1007/s11858-021-01220-x10.1007/s11858-021-01220-x Search in Google Scholar

Scherer, P., Beswick, K., DeBlois, L., Healy, L., & Moser Opitz, E. (2016). Assistance of students with mathematical learning difficulties: how can research support practice? ZDMMathematics Education, 48(5), 633–649. doi.org/10.1007/S11858-016-0800-1 Search in Google Scholar

Selter, C., Prediger, S., Nührenbörger, M., & Hußmann, S. (Eds.). (2014). Mathe sicher können – Natürliche Zahlen. Förderbausteine und Hand- reichungen für ein Förderkonzept zur Sicherung mathematischer Basiskompetenzen. Berlin: Cornelsen. http://mathe-sicher-koennen.dzlm.de/002. Search in Google Scholar

Slavin, R. E., & Madden, N. A. (1989). What Works for Students at Risk: A Research Synthesis. Educational Leadership, 46(5), 4–13. Search in Google Scholar

Stacey, K., Steinle, V., Price, B., & Gvozdenko, E. (2018). Specific mathematics assessments that reveal thinking. In T. Leuders, K. Philipp, & J. Leuders (Eds.), Diagnostic Competence of Mathematics Teachers (pp. 241–261). Springer. https://doi.org/10.1007/978-3-319-66327-2_1310.1007/978-3-319-66327-2_13 Search in Google Scholar

Stanat, P., Schipolowski, S., Schneider, R., Karoline A. Sachse, Weirich, S., & Henschel, S. (2022). IQB-Bildungstrend 2021: Kompetenzen in den Fächern Deutsch und Mathematik am Ende der 4. Jahrgangsstufe: Erste Ergebnisse nach über einem Jahr Schulbetrieb unter Pandemiebedingungen. Waxmann. https://doi.org/https://www.iqb.hu-ber-lin.de/bt/BT2021/Bericht/ Search in Google Scholar

Swan, M. (2007). The impact of task-based professional development on teachers’ practices and beliefs: A design research study. Journal of Mathematics Teacher Education, 10(4-6), 217–237. https://doi.org/10.1007/s10857-007-9038-810.1007/s10857-007-9038-8 Search in Google Scholar

Van den Heuvel-Panhuizen, M. (2005). Can scientific research answer the ‘what’ question of mathematics education? Cambridge Journal of Education, 35(1), 35–53. https://doi.org/10.1080/030576404200033248910.1080/0305764042000332489 Search in Google Scholar

Wang, T. Y., Lin, F. L., & Yang, K. L. (2021). Success factors for a national problem-driven program aimed at enhancing affective performance in mathematics learning. ZDM – Mathematics Education, 53(5), 1121–1136. https://doi.org/10.1007/s11858-021-01285-810.1007/s11858-021-01285-8 Search in Google Scholar

Watson, A., & de Geest, E. (2005). Principled teaching for deep progress: Improving mathematical learning beyond methods and materials. Educational Studies in Mathematics, 58(2), 209–234. https://doi.org/10.1007/s10649-005-2756-x10.1007/s10649-005-2756-x Search in Google Scholar

Wittmann, E. Ch. (1982|2021). Teaching units as the integrating core of mathematics education. In E. C. Wittmann (Ed.), Connecting mathematics and mathematics education: Collected papers on mathematics education as a design science (pp. 25–36). Springer 2021.10.1007/978-3-030-61570-3_2 Search in Google Scholar

https://doi.org/10.1007/978-3-030-61570-2 (Translation of Wittmann, E. Ch. (1982). Unterrichtsbeispiele als integrierender Kern der Mathematikdidaktik. Journal für Mathematik-Didaktik, 3(1), 3–20.10.1007/BF03338657 Search in Google Scholar

https://doi.org/10.1007/BF03338657) Search in Google Scholar

eISSN:
2616-7697
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
Volume Open
Fachgebiete der Zeitschrift:
Sozialwissenschaften, Pädagogik, Lehrplan und Pädagogik, andere