Uneingeschränkter Zugang

Screening and Identification of Trichoderma Strains Isolated from Natural Habitats with Potential to Cellulose and Xylan Degrading Enzymes Production


Zitieren

Aehle W. 2007. Enzymes in industry. Third edition, Wiley-VCH Verlag GmbH & Co. KGaA.AehleW.2007Enzymes in industryThird edition,Wiley-VCH Verlag GmbH & Co. KGaASearch in Google Scholar

Altinok H.H. 2009. In vitro production of fumonisin B1 and B2 by Fusarium moniliforme and the biocontrol activity of Trichoderma harzianum. Ann. Microbiol. 59(3): 509–516.AltinokH.H.2009In vitro production of fumonisin B1 and B2 by Fusarium moniliforme and the biocontrol activity of Trichoderma harzianumAnn. Microbiol.59(3):50951610.1007/BF03175139Search in Google Scholar

Amore A., S. Giacobbe and V. Faraco. 2013. Regulation of cellulase and hemicellulase gene expression in fungi. Curr. Genomics. 14: 230–249.AmoreA.S.GiacobbeV.Faraco2013Regulation of cellulase and hemicellulase gene expression in fungiCurr. Genomics.1423024910.2174/1389202911314040002373181424294104Search in Google Scholar

Banerjee S., S. Mudliar, R. Sen, B. Giri, D. Satpute, T. Chakrabarti and R.A. Pandey. 2010. Commercializing lignocellulosic bioethanol: technology bottlenecks and possible remedies. Biofuels, Bioprod. Bioref. 4: 77–93.BanerjeeS.S.MudliarR.SenB.GiriD.SatputeT.ChakrabartiR.A.Pandey2010Commercializing lignocellulosic bioethanol: technology bottlenecks and possible remediesBiofuels, Bioprod. Bioref.4779310.1002/bbb.188Search in Google Scholar

Beg Q., B. Bhushan, M. Kapoor and G.S. Hoondal. 2000. Production and characterization of thermostable xylanase and pectinase from Streptomyces sp. QG-11-3. J. Ind. Microbiol. Biot. 24: 396–402.BegQ.B.BhushanM.KapoorG.S.Hoondal2000Production and characterization of thermostable xylanase and pectinase from Streptomyces sp. QG-11-3J. Ind. Microbiol. Biot.2439640210.1038/sj.jim.7000010Search in Google Scholar

Błaszczyk L., D. Popiel, J. Chełkowski, G. Koczyk, G.J. Samuels, K. Sobieralski and M. Siwulski. 2011. Species diversity of Trichoderma in Poland. J. Appl. Genet. 52: 233–243.BłaszczykL.D.PopielJ.ChełkowskiG.KoczykG.J.SamuelsK.SobieralskiM.Siwulski2011Species diversity of Trichoderma in PolandJ. Appl. Genet.5223324310.1007/s13353-011-0039-z308880321465156Search in Google Scholar

Błaszczyk L., M. Siwulski, K. Sobieralski and D. Frużyńska-Jóźwiak. 2013. Diversity of Trichoderma spp. causing Pleurotus green mould diseases in Central Europe. Folia Microbiol. 58: 325–333.BłaszczykL.M.SiwulskiK.SobieralskiD.Frużyńska-Jóźwiak2013Diversity of Trichoderma spp. causing Pleurotus green mould diseases in Central EuropeFolia Microbiol.5832533310.1007/s12223-012-0214-6368314023192526Search in Google Scholar

Błaszczyk L., J. Strakowska, J. Chełkowski, A. Gąbka-Buszek and J. Kaczmarek. 2016. Trichoderma species occurring on wood with decay symptoms in mountain forests in Central Europe: genetic and enzymatic characterization. J. Appl. Genet. 57: 397–407.BłaszczykL.J.StrakowskaJ.ChełkowskiA.Gąbka-BuszekJ.Kaczmarek2016Trichoderma species occurring on wood with decay symptoms in mountain forests in Central Europe: genetic and enzymatic characterizationJ. Appl. Genet.5739740710.1007/s13353-015-0326-1496345526586561Search in Google Scholar

Carbone I. and Kohn L.M. 1999. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia. 91: 553–556.CarboneI.KohnL.M.1999A method for designing primer sets for speciation studies in filamentous ascomycetesMycologia.9155355610.1080/00275514.1999.12061051Search in Google Scholar

Chakdar H., M. Kumar, K. Pandiyan, A. Singh, K. Nanjappan, P.L. Kashyap and A.K. Srivastava. 2016. Bacterial xylanases: biology to biotechnology. 3 Biotech. 6(2): 150.ChakdarH.M.KumarK.PandiyanA.SinghK.NanjappanP.L.KashyapA.K.Srivastava2016Bacterial xylanases: biology to biotechnology3 Biotech.6(2):15010.1007/s13205-016-0457-z492908428330222Search in Google Scholar

Chandel K., S. Jandaik, V. Kumari, S. Sarswati, A. Sharma, D. Kumar and N. Kumar. 2013. Isolation, purification and screening of cellulolytic fungi from mushroom compost for production of enzyme (cellulase). Int. J. Curr. Res. 5(1): 222–229.ChandelK.S.JandaikV.KumariS.SarswatiA.SharmaD.KumarN.Kumar2013Isolation, purification and screening of cellulolytic fungi from mushroom compost for production of enzyme (cellulase)Int. J. Curr. Res.5(1):222229Search in Google Scholar

Chávez R., F. Fierro, R.O. García-Rico and I. Vaca. 2015. Filamentous fungi from extreme environments as a promising source of novel bioactive secondary metabolites. Front. Microbiol. 6: 903.ChávezR.F.FierroR.O.García-RicoI.Vaca2015Filamentous fungi from extreme environments as a promising source of novel bioactive secondary metabolitesFront. Microbiol.690310.3389/fmicb.2015.00903456325326441853Search in Google Scholar

Clarke A. 1997. Biodegradation of cellulose: enzymology and biotechnology. CRC Press.ClarkeA.1997Biodegradation of cellulose: enzymology and biotechnologyCRC PressSearch in Google Scholar

Crowther T.W., L. Boddy and T.H. Jones. 2012. Functional and ecological consequences of saprotrophic fungus-grazer interactions. ISME J. 6: 1992–2001.CrowtherT.W.L.BoddyT.H.Jones2012Functional and ecological consequences of saprotrophic fungus-grazer interactionsISME J.61992200110.1038/ismej.2012.53347537522717883Search in Google Scholar

Cyplik P., R. Marecik, A. Piotrowska-Cyplik, A. Olejnik, A. Drozdzyńska and Ł. Chrzanowski. 2012. Biological denitrification of high nitrate processing wastewaters from explosives production plant. Water Air Soil Poll. 223(4): 1791–1800.CyplikP.R.MarecikA.Piotrowska-CyplikA.OlejnikA.DrozdzyńskaŁ.Chrzanowski2012Biological denitrification of high nitrate processing wastewaters from explosives production plantWater Air Soil Poll.223(4):1791180010.1007/s11270-011-0984-5333238722593607Search in Google Scholar

Doohan F.M., D.W. Parry, P. Jenkinson and P. Nicholson. 1998. The use of species-specific PCR-based assays to analyse Fusarium ear blight of wheat. Plant Pathol. 47: 197–205.DoohanF.M.D.W.ParryP.JenkinsonP.Nicholson1998The use of species-specific PCR-based assays to analyse Fusarium ear blight of wheatPlant Pathol.4719720510.1046/j.1365-3059.1998.00218.xSearch in Google Scholar

Druzhinina I.S., A.G. Kopchinskiy, M. Komon, J. Bissett, G. Szakacs and C.P. Kubicek. 2005. An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genet. Biol. 42: 813–828.DruzhininaI.S.A.G.KopchinskiyM.KomonJ.BissettG.SzakacsC.P.Kubicek2005An oligonucleotide barcode for species identification in Trichoderma and HypocreaFungal Genet. Biol.4281382810.1016/j.fgb.2005.06.00716154784Search in Google Scholar

Druzhinina I.S., M. Komoń-Zelazowska, L. Atanasova, V. Seidl and Ch.P. Kubicek. 2010. Evolution and ecophysiology of the industrial producer Hypocrea jecorina (Anamorph Trichoderma reesei) and a new sympatric agamospecies related to it. PLOS ONE. 5(2): e9191. doi:10.1371/journal.pone.0009191.DruzhininaI.S.M.Komoń-ZelazowskaL.AtanasovaV.Seidl and Ch.P. Kubicek2010Evolution and ecophysiology of the industrial producer Hypocrea jecorina (Anamorph Trichoderma reesei) and a new sympatric agamospecies related to itPLOS ONE5(2):e9191.doi:10.1371/journal.pone.0009191Open DOISearch in Google Scholar

Gams W. and J. Bisset. 1998. Morphology and identification of Trichoderma. In: Harman G. E. and C. P. Kubicek (eds). Trichoderma & Gliocladium. Vol. 1. Taylor and Francis, London.GamsW.J.Bisset1998Morphology and identification of Trichoderma .In:HarmanG. E.C. P.Kubicek(eds).Trichoderma & GliocladiumVol1Taylor and FrancisLondonSearch in Google Scholar

Ghose T. K. 1987. Measurement of cellulase activities. Pure & Appl. Chem. 59: 257–268.GhoseT. K.1987Measurement of cellulase activitiesPure & Appl. Chem.5925726810.1351/pac198759020257Search in Google Scholar

Hadkin L. and S. Anagnostakis. 1977. Solid media containing carboxyl methyl cellulose to detect CM cellulase activity of microorganisms. J. Gen. Microbiol. 98: 109–115.HadkinL.S.Anagnostakis1977Solid media containing carboxyl methyl cellulose to detect CM cellulase activity of microorganismsJ. Gen. Microbiol.9810911510.1099/00221287-98-1-109401863Search in Google Scholar

Harreither W., Ch. Sygmund, M. Augustin, M. Narciso, M.L. Rabinovich, L. Gorton, D. Haltrich and R. Ludwig. 2011. Catalytic Properties and Classification of Cellobiose Dehydrogenases from Ascomycetes. Appl. Environ. Microbiol. 7(5): 1804–1815.HarreitherW.Ch.SygmundM.AugustinM.NarcisoM.L.RabinovichL.GortonD.HaltrichR.Ludwig2011Catalytic Properties and Classification of Cellobiose Dehydrogenases from AscomycetesAppl. Environ. Microbiol.7(5):18041815Search in Google Scholar

Harris A.D. and C. Ramalingam. 2010. Xylanases and its application in food industry: a review. J. Exp. Sciences. 1(7): 1–11.HarrisA.D.C.Ramalingam2010Xylanases and its application in food industry: a reviewJ. Exp. Sciences.1(7):111Search in Google Scholar

Hendriks A. and G. Zeeman. 2009. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 100: 10–18.HendriksA.G.Zeeman2009Pretreatments to enhance the digestibility of lignocellulosic biomassBioresour. Technol.100101810.1016/j.biortech.2008.05.02718599291Search in Google Scholar

Inuwa Ja’afaru M. 2013. Screening of fungi isolated from environmental samples for xylanase and cellulase production. Hindawi Publishing Corporation, ISRN Microbiol. Vol. 2013. Article ID 283423.Inuwa Ja’afaruM.2013Screening of fungi isolated from environmental samples for xylanase and cellulase productionHindawi Publishing CorporationISRN Microbiol.Vol. 2013Article ID283423Search in Google Scholar

Jae-Hyuk Y. and N. Keller. 2005. Regulation of secondary metabolism in filamentous fungi. Annu. Rev. Phytophatol. 43: 437–458.Jae-HyukY.N.Keller2005Regulation of secondary metabolism in filamentous fungiAnnu. Rev. Phytophatol.4343745810.1146/annurev.phyto.43.040204.14021416078891Search in Google Scholar

Jaklitsch W.M., M. Komon, C.P. Kubicek and I.S. Druzhinina. 2005. Hypocrea voglmayrii sp. nov. from the Austrian Alps represents a new phylogenetic clade in Hypocrea/Trichoderma. Mycologia. 97: 1365–1378.JaklitschW.M.M.KomonC.P.KubicekI.S.Druzhinina2005Hypocrea voglmayrii sp. nov. from the Austrian Alps represents a new phylogenetic clade in Hypocrea/TrichodermaMycologia.971365137810.1080/15572536.2006.11832743Search in Google Scholar

Jaklitsch W.M. 2011. European species of Hypocrea part II: species with hyaline ascospores. Fungal Divers. 48: 1–250.JaklitschW.M.2011European species of Hypocrea part II: species with hyaline ascosporesFungal Divers.48125010.1007/s13225-011-0088-ySearch in Google Scholar

Jeleń H., L. Błaszczyk, J. Chełkowski, K. Rogowicz and J. Strakowska. 2014. Formation of 6-n-pentyl-2H-pyran-2-one (6-PAP) and other volatiles by different Trichoderma species. Mycol. Progress. 3: 589–600.JeleńH.L.BłaszczykJ.ChełkowskiK.RogowiczJ.Strakowska2014Formation of 6-n-pentyl-2H-pyran-2-one (6-PAP) and other volatiles by different Trichoderma speciesMycol. Progress.358960010.1007/s11557-013-0942-2Search in Google Scholar

Jorgensen H., J. Kutter and L. Olsson. 2003. Separation and quantification of cellulases and hemicelulases by capillary electrophoresis. Anal. Biochem. 317(1): 85–93.JorgensenH.J.KutterL.Olsson2003Separation and quantification of cellulases and hemicelulases by capillary electrophoresisAnal. Biochem.317(1):859310.1016/S0003-2697(03)00052-6Search in Google Scholar

Kopchinskiy A., M. Komon, C.P. Kubicek and I.S. Druzhinina. 2005. TrichoBLAST: a multilocus database for Trichoderma and Hypocrea identifications. Mycol. Res. 109: 657–660.KopchinskiyA.M.KomonC.P.KubicekI.S.Druzhinina2005TrichoBLAST: a multilocus database for Trichoderma and Hypocrea identificationsMycol. Res.10965766010.1017/S0953756205233397Search in Google Scholar

Kubicek C.P. 2013. Systems biological approaches towards understanding cellulase production by Trichoderma reesei. J. Biotechnol. 163: 133–142.KubicekC.P.2013Systems biological approaches towards understanding cellulase production by Trichoderma reeseiJ. Biotechnol.16313314210.1016/j.jbiotec.2012.05.020Search in Google Scholar

Kumar P., D. M. Barrett, M.J. Delwiche and P. Stroeve. 2009. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 48 (8): 3713–3729.KumarP.D. M.BarrettM.J.DelwicheP.Stroeve2009Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel productionInd. Eng. Chem. Res.48(8):3713372910.1021/ie801542gSearch in Google Scholar

Liming X. and S. Xueliang. 2004. High-yield cellulase production by Trichoderma reesei ZU-02 on corn cob residue. Bioresour. Technol. 91(3): 259–262.LimingX.S.Xueliang2004High-yield cellulase production by Trichoderma reesei ZU-02 on corn cob residueBioresour. Technol.91(3):25926210.1016/S0960-8524(03)00195-0Search in Google Scholar

Lisiecki P., Ł. Chrzanowski, A. Szulc, Ł. Ławniczak, W. Białas, M. Dziadas, M. Owsianiak, J. Staniewski, P. Cyplik, R. Marecik and others. 2014. Biodegradation of diesel/biodiesel blends in saturated sand microcosms. Fuel. 116: 321–327.LisieckiP.Ł.ChrzanowskiA.SzulcŁ.ŁawniczakW.BiałasM.DziadasM.OwsianiakJ.StaniewskiP.CyplikR.Marecikand others2014Biodegradation of diesel/biodiesel blends in saturated sand microcosmsFuel.11632132710.1016/j.fuel.2013.08.009Search in Google Scholar

Marecik R., R. Dembczyński, W. Juzwa, Ł. Chrzanowski and P. Cyplik. 2015. Removal of nitrates from processing wastewater by cryoconcentration combined with biological denitrification. Desalin. Water Treat. 54(7): 1903–1911.MarecikR.R.DembczyńskiW.JuzwaŁ.ChrzanowskiP.Cyplik2015Removal of nitrates from processing wastewater by cryoconcentration combined with biological denitrificationDesalin. Water Treat.54(7):1903191110.1080/19443994.2014.893842Search in Google Scholar

Marecik R., J. Wojtera-Kwiczor, Ł. Ławniczak, P. Cyplik, A. Szulc, A. Piotrowska-Cyplik and Ł. Chrzanowski. 2012. Rhamnolipids increase the phytotoxicity of diesel oil towards four common plant species in a terrestrial environment. Water Air Soil Poll. 223(7): 4275–4282.MarecikR.J.Wojtera-KwiczorŁ.ŁawniczakP.CyplikA.SzulcA.Piotrowska-CyplikŁ.Chrzanowski2012Rhamnolipids increase the phytotoxicity of diesel oil towards four common plant species in a terrestrial environmentWater Air Soil Poll.223(7):4275428210.1007/s11270-012-1190-9340937122865941Search in Google Scholar

Miller G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426–428.MillerG.L.1959Use of dinitrosalicylic acid reagent for determination of reducing sugarAnal. Chem.3142642810.1021/ac60147a030Search in Google Scholar

Park Y.C. and J.S. Kim. 2012. Comparison of various alkaline pretreatment methods of lignocellulosic biomass. Energy. 47(1): 31–35.ParkY.C.J.S.Kim2012Comparison of various alkaline pretreatment methods of lignocellulosic biomassEnergy47(1):313510.1016/j.energy.2012.08.010Search in Google Scholar

Pęziak D., A. Piotrowska, R. Marecik, P. Lisiecki, M. Woźniak, A. Szulc, Ł. Ławniczak and Ł. Chrzanowski. 2013. Bioavailability of hydrocarbons to bacterial consortia during Triton X-100 mediated biodegradation in aqueous media. Acta Biochim. Pol. 60(4): 789–793.PęziakD.A.PiotrowskaR.MarecikP.LisieckiM.WoźniakA.SzulcŁ.ŁawniczakŁ.Chrzanowski2013Bioavailability of hydrocarbons to bacterial consortia during Triton X-100 mediated biodegradation in aqueous mediaActa Biochim. Pol.60(4):789793Search in Google Scholar

Piotrowska-Cyplik A. and Z. Czarnecki. 2003. Phytoextraction of heavy metals by hemp during anaerobic sewage sludge management in the non-industrial sites. Pol. J. Environ. Stud. 12(6): 779–784.Piotrowska-CyplikA.Z.Czarnecki2003Phytoextraction of heavy metals by hemp during anaerobic sewage sludge management in the non-industrial sitesPol. J. Environ. Stud.12(6):779784Search in Google Scholar

Polizeli M., A. Rizzatti, R. Monti, H. Terenzi, J.A. Jorge and D. Amorim. 2005. Xylanases from fungi: properties and industrial applications. Appl. Microbiol. Biotechnol. 67: 577–591.PolizeliM.A.RizzattiR.MontiH.TerenziJ.A.JorgeD.Amorim2005Xylanases from fungi: properties and industrial applicationsAppl. Microbiol. Biotechnol.6757759110.1007/s00253-005-1904-715944805Search in Google Scholar

Sanchez C. 2009. Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnol. Adv. 27: 185–194.SanchezC.2009Lignocellulosic residues: Biodegradation and bioconversion by fungiBiotechnol. Adv.2718519410.1016/j.biotechadv.2008.11.00119100826Search in Google Scholar

Sandgren M., J. Stáhlberg and C. Mitchinson. 2005. Structural and biochemical studies of GH family 12 cellulases: improved thermal stability, and ligand complexes, Prog. Biophys. Mol. Biol. 89: 246–291.SandgrenM.J.StáhlbergC.Mitchinson2005Structural and biochemical studies of GH family 12 cellulases: improved thermal stability, and ligand complexesProg. Biophys. Mol. Biol.8924629110.1016/j.pbiomolbio.2004.11.00215950056Search in Google Scholar

Sarkar N., S. Kumar, S. Bannerjee and K. Aikat. 2012. Bioethanol production from agricultural wastes: An overview. Renew. Energ. 37: 19–27.SarkarN.S.KumarS.BannerjeeK.Aikat2012Bioethanol production from agricultural wastes: An overviewRenew. Energ.37192710.1016/j.renene.2011.06.045Search in Google Scholar

Saxena R., D. Adhikari and H. Goyal. 2009. Biomass-based energy fuel through biochemical routes: A review. Renew. Sust. Energ. Rev. 13: 168–178.SaxenaR.D.AdhikariH.Goyal2009Biomass-based energy fuel through biochemical routes: A reviewRenew. Sust. Energ. Rev.1316817810.1016/j.rser.2007.07.011Search in Google Scholar

Sazci A., A. Radford and K. Erenler. 1986. Detection of cellulolytic fungi by using Congo-red as an indicator: a comparative study with the dinitrosalicilic acid reagent method. J. Appl. Bacteriol. 61: 559–562.SazciA.A.RadfordK.Erenler1986Detection of cellulolytic fungi by using Congo-red as an indicator: a comparative study with the dinitrosalicilic acid reagent methodJ. Appl. Bacteriol.6155956210.1111/j.1365-2672.1986.tb01729.xSearch in Google Scholar

Sun Y. and J. Cheng. 2002. Hydrolysis of lignocellulosic material for ethanol production: a review. Bioresour. Technol. 96: 673–686.SunY.J.Cheng2002Hydrolysis of lignocellulosic material for ethanol production: a reviewBioresour. Technol.96673686Search in Google Scholar

Taherzadeh M. and K. Karimi. 2008. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int. J. Mol. Sci. 9: 1621–1651.TaherzadehM.K.Karimi2008Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a reviewInt. J. Mol. Sci.91621165110.3390/ijms9091621263575719325822Search in Google Scholar

Than T.-C., D. Kracher, R. Gandini, Ch. Sygmund, R. Kittl, D. Haltrich, B. M. Hällberg, R. Ludwig and Ch. Divne. 2015. Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation. Nat. Commun. 6: 7542. doi: 10.1038/ncomms8542.ThanT.-C.D.KracherR.GandiniCh.SygmundR.KittlD.HaltrichB. M.HällbergR.LudwigCh.Divne2015Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradationNat. Commun.67542.doi: 10.1038/ncomms8542Open DOISearch in Google Scholar

Qin W.T. and W.Y. Zhuang. 2016. Seven wood-inhabiting new species of the genus Trichoderma (Fungi, Ascomycota) in Viride clade. Sci. Rep. 6, 27074. doi: 10.1038/srep27074.QinW.T.W.Y.Zhuang2016Seven wood-inhabiting new species of the genus Trichoderma (Fungi, Ascomycota) in Viride cladeSci. Rep.627074.doi: 10.1038/srep27074Open DOISearch in Google Scholar

Vinale F., R. Marra, F. Scala, E. Ghisalberti, M. Lorito and K. Sivasithamparam. 2006. Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Lett. Appl. Microbiol. 43: 143–148.VinaleF.R.MarraF.ScalaE.GhisalbertiM.LoritoK.Sivasithamparam2006Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogensLett. Appl. Microbiol.4314314810.1111/j.1472-765X.2006.01939.x16869896Search in Google Scholar

Vinale F., K. Sivasithamparam, E.L. Ghisalberti, R. Marra, S.L. Woo and M. Lorito. 2008. Trichoderma-plant-pathogen interactions. Soil Biol. Biochem. 40: 1–10.VinaleF.K.SivasithamparamE.L.GhisalbertiR.MarraS.L.WooM.Lorito2008Trichoderma-plant-pathogen interactionsSoil Biol. Biochem.4011010.1016/j.soilbio.2007.07.002Search in Google Scholar

Wen Z., W. Liao and S. Chen. 2005. Production of cellulase by Trichoderma reesei from dairy manure. Bioresour. Technol. 96(4): 491–499.WenZ.W.LiaoS.Chen2005Production of cellulase by Trichoderma reesei from dairy manureBioresour. Technol.96(4):49149910.1016/j.biortech.2004.05.02115491832Search in Google Scholar

White T.J., T. Bruns, S. Lee and J.W. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, pp. 315–322. In: Innis M.A., D.H. Gelfand, J.J. Shinsky, T.J. White (eds). PCR protocols: a guide to methods and applications. Academic, San Diego.WhiteT.J.T.BrunsS.LeeJ.W.Taylor1990Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics,pp. 315322.In:InnisM.A.D.H.GelfandJ.J.ShinskyT.J.White(eds).PCR protocols: a guide to methods and applicationsAcademicSan Diego10.1016/B978-0-12-372180-8.50042-1Search in Google Scholar

Wilson D.B. 2009. Cellulases and biofuels. Curr. Opin. Biotechnol. 20: 295–299.WilsonD.B.2009Cellulases and biofuelsCurr. Opin. Biotechnol.2029529910.1016/j.copbio.2009.05.00719502046Search in Google Scholar

Wojtkowiak-Gębarowska E. 2006. Mechanizmy zwalczania fitopatogenów glebowych przez grzyby z rodzaju Trichodrema. Post. Mikrobiol. 45(4): 261–273.Wojtkowiak-GębarowskaE.2006Mechanizmy zwalczania fitopatogenów glebowych przez grzyby z rodzaju TrichodremaPost. Mikrobiol.45(4):261273Search in Google Scholar

Xu J., N. Takakuwa, M. Nogawa, H. Okada and Y. Morikawa. 1998. A third xylanase from Trichoderma reesei PC-3-7. Appl. Microbiol. Biotechnol. 49: 718–724.XuJ.N.TakakuwaM.NogawaH.OkadaY.Morikawa1998A third xylanase from Trichoderma reesei PC-3-7Appl. Microbiol. Biotechnol.4971872410.1007/s002530051237Search in Google Scholar

Ziemniński K., I. Romanowska and M. Kowalska. 2012. Enyzmatic pretreatment of lignocellulosic wastes to improve biogas production. Waste Manag. 32: 1131–1137.ZiemnińskiK.I.RomanowskaM.Kowalska2012Enyzmatic pretreatment of lignocellulosic wastes to improve biogas productionWaste Manag.321131113710.1016/j.wasman.2012.01.01622342637Search in Google Scholar

eISSN:
2544-4646
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Mikrobiologie und Virologie