Erfordert Authentifizierung

An update on the I blood group system

   | 16. Feb. 2020

Zitieren

International Society for Blood Transfusion. Names for I (ISBT 027) blood group alleles. www.isbtweb.org.International Society for Blood Transfusion. Names for I (ISBT 027) blood group alleles. www.isbtweb.org.Search in Google Scholar

Happ H, Weh E, Costakos D, Reis LM, Semina EV. Case report of homozygous deletion involving the first coding exons of the upstream region of GCNT2 isoforms A and B and part of the upstream region of TFAP2A in congenital cataract. BMC Med Genet 2016;17:64.HappHWehECostakosDReisLMSeminaEV.Case report of homozygous deletion involving the first coding exons of the upstream region of GCNT2 isoforms A and B and part of the upstream region of TFAP2A in congenital cataract. BMC Med Genet2016;17:64.10.1186/s12881-016-0316-0501688027609212Search in Google Scholar

Irum B, Khan SY, Ali M, et al. Deletion at the GCNT2 locus causes autosomal recessive congenital cataracts. PLoS One 2016;11:e0167562.IrumBKhanSYAliM, Deletion at the GCNT2 locus causes autosomal recessive congenital cataracts. PLoS One2016;11:e0167562.10.1371/journal.pone.0167562514789927936067Search in Google Scholar

Nakamura K, Sawaki H, Yamashita K, Watanabe M, Narimatsu H. Identification of epigenetic silencing of GCNT2 expression by comprehensive real-time PCR screening in colorectal cancer. J Clin Oncol 2014;32(Suppl 3):506.NakamuraKSawakiHYamashitaKWatanabeMNarimatsuH.Identification of epigenetic silencing of GCNT2 expression by comprehensive real-time PCR screening in colorectal cancer. J Clin Oncol2014;32(Suppl 3):506.10.1200/jco.2014.32.3_suppl.506Search in Google Scholar

Onodera T. A new IGNT allele found in the adult i-negative in Japanese without congenital cataracts. Vox Sang 2011;101(Suppl 1):262.OnoderaT.A new IGNT allele found in the adult i-negative in Japanese without congenital cataracts. Vox Sang2011;101(Suppl 1):262.Search in Google Scholar

Aldahmesh MA, Khan AO, Mohamed JY, et al. Genomic analysis of pediatric cataract in Saudi Arabia reveals novel candidate disease genes. Genet Med 2010;14:955–62.AldahmeshMAKhanAOMohamedJY, Genomic analysis of pediatric cataract in Saudi Arabia reveals novel candidate disease genes. Genet Med2010;14:95562.10.1038/gim.2012.8622935719Search in Google Scholar

Brock G, Kakar N, Hoch J, et al. An Alu repeat-mediated genomic GCNT2 deletion underlies congenital cataracts and adult I blood group. Hum Genet 2012;131:209–16.BrockGKakarNHochJ, An Alu repeat-mediated genomic GCNT2 deletion underlies congenital cataracts and adult I blood group. Hum Genet2012;131:20916.10.1007/s00439-011-1062-121761136Search in Google Scholar

Li J, Leng Y, Han S, et al. Clinical and genetic characteristics of Chinese patients with familial or sporadic pediatric cataract. Orpahnet J Rare Dis 2019;13:94.LiJLengYHanS, Clinical and genetic characteristics of Chinese patients with familial or sporadic pediatric cataract. Orpahnet J Rare Dis2019;13:94.10.1186/s13023-018-0828-0600659629914532Search in Google Scholar

Reid ME, Lomas-Francis C, Olsson ML. The blood group antigen factsbook. 3rd ed. Cambridge, MA: Elsevier, 2012.ReidMELomas-FrancisCOlssonML.The blood group antigen factsbook. 3rd ed.Cambridge, MA: Elsevier, 2012.10.1016/B978-0-12-415849-8.00026-0Search in Google Scholar

Yu L-C, Lin M. Molecular genetics of the blood group I system and the regulation of I antigen expression during erythropoiesis and granulocytopoiesis. Curr Opin Hematol 2011;18:421–6.YuL-CLinM.Molecular genetics of the blood group I system and the regulation of I antigen expression during erythropoiesis and granulocytopoiesis. Curr Opin Hematol2011;18:4216.10.1097/MOH.0b013e32834baae921912254Search in Google Scholar

Cooling L. Polylactosamines, there’s more than meets the “Ii”: a review of the I system. Immunohematology 2010;26:133–55.CoolingL.Polylactosamines, there’s more than meets the “Ii”: a review of the I system. Immunohematology2010;26:13355.10.21307/immunohematology-2019-213Search in Google Scholar

Twu Y-C, Hsieh C-Y, Lin M, Tzeng C-H, Sun C-F, Yu L-C. Phosphorylation status of transcription factor C/EBPa determines cell-surface poly-LacNAc branching (I antigen) formation in erythropoiesis and granulocytopoiesis. Blood 2010;115:2491–9.TwuY-CHsiehC-YLinMTzengC-HSunC-FYuL-C.Phosphorylation status of transcription factor C/EBPa determines cell-surface poly-LacNAc branching (I antigen) formation in erythropoiesis and granulocytopoiesis. Blood2010;115:24919.10.1182/blood-2009-07-23199320101026Search in Google Scholar

Geest CR, Coffer PJ. MAPK signaling pathways in the regulation of hematopoiesis. J Leuk Biol 2009;86:237–50.GeestCRCofferPJ.MAPK signaling pathways in the regulation of hematopoiesis. J Leuk Biol2009;86:23750.10.1189/jlb.0209097Search in Google Scholar

Tajan M, de Rocca Seraa A, Valet P, Edouard T, Yart A. SHP2 sails from physiology to pathology. Eur J Med Genet 2015;58:509–25.TajanMde Rocca SeraaAValetPEdouardTYartA.SHP2 sails from physiology to pathology. Eur J Med Genet2015;58:50925.10.1016/j.ejmg.2015.08.005Search in Google Scholar

Liao Y-J, Lee Y-H, Chang F-L, Ho H, Huang C-H, Tsu T-C. The SHP2-ERK2 signaling pathway regulates branched I antigen formation by controlling the binding of CCAAT/enhancer binding protein a to the IGNTC promoter region during erythroid differentiation. Transfusion 2016;56:2691–702.LiaoY-JLeeY-HChangF-LHoHHuangC-HTsuT-C.The SHP2-ERK2 signaling pathway regulates branched I antigen formation by controlling the binding of CCAAT/enhancer binding protein a to the IGNTC promoter region during erythroid differentiation. Transfusion2016;56:2691702.10.1111/trf.13796Search in Google Scholar

Dor Y, Cedar H. Principles of DNA methylation and their implications for biology and medicine. Lancet 2018;392: 777–86.DorYCedarH.Principles of DNA methylation and their implications for biology and medicine. Lancet2018;392: 77786.10.1016/S0140-6736(18)31268-6Search in Google Scholar

Yu Y, Ebenezer D, Bhattacharyya S, et al. High resolution methylome analysis reveals widespread functional hypomethylation during adult human erythropoiesis. J Biol Chem 2013;288:8805–14.YuYEbenezerDBhattacharyyaS, High resolution methylome analysis reveals widespread functional hypomethylation during adult human erythropoiesis. J Biol Chem2013;288:880514.10.1074/jbc.M112.423756Search in Google Scholar

Lessard S, Beaudoin M, Benkirane K, Lettre G. Comparison of DNA methylation profiles in human fetal and adult red blood cell progenitors. Genome Med 2015;7:1.LessardSBeaudoinMBenkiraneKLettreG.Comparison of DNA methylation profiles in human fetal and adult red blood cell progenitors. Genome Med2015;7:1.10.1186/s13073-014-0122-2Search in Google Scholar

Murakami M, Yoshimoto T, Nakabayashi K, et al. Integration of transcriptome and methylome analysis of aldosterone-producing adenomas. Eur J Endocrin 2015;173:185–95.MurakamiMYoshimotoTNakabayashiK, Integration of transcriptome and methylome analysis of aldosterone-producing adenomas. Eur J Endocrin2015;173:18595.10.1530/EJE-15-0148Search in Google Scholar

Nakamura K, Yamashita K, Sawaki H, et al. Aberrant methylation of GCNT2 is tightly regulated to lymph node metastasis of primary CRC. Anticancer Res 2015;35:1411–22.NakamuraKYamashitaKSawakiH, Aberrant methylation of GCNT2 is tightly regulated to lymph node metastasis of primary CRC. Anticancer Res2015;35:141122.Search in Google Scholar

Qin Y, Zhao L, Wang X, et al. MeCP2 regulated glycogenes contribute to proliferation and apoptosis of gastric cancer cells. Glycobiology 2017;27:306–17.QinYZhaoLWangX, MeCP2 regulated glycogenes contribute to proliferation and apoptosis of gastric cancer cells. Glycobiology2017;27:30617.10.1093/glycob/cwx006Search in Google Scholar

Cai Y, Yu X, Hu S, Yu J. A brief review on the mechanism of miRNA regulation. Genomics Proteomics Bioinformatics 2009;7:147–54.CaiYYuXHuSYuJ.A brief review on the mechanism of miRNA regulation. Genomics Proteomics Bioinformatics2009;7:14754.10.1016/S1672-0229(08)60044-3Search in Google Scholar

De Vasconcellos JF, Brynes C, Lee YT, et al. Tough decoy targeting of predominant let-7 miRNA species in adult human hematopoietic cells. J Transl Med 2017;15:169.De VasconcellosJFBrynesCLeeYT, Tough decoy targeting of predominant let-7 miRNA species in adult human hematopoietic cells. J Transl Med2017;15:169.10.1186/s12967-017-1273-x554168828768505Search in Google Scholar

Chen B-Z, Yu S-L, Singh S, et al. Identification of microRNAs expressed highly in pancreatic islet-like cell clusters differentiated from human embryonic stem cells. Cell Biol Int 2011;35:29–37.ChenB-ZYuS-LSinghS, Identification of microRNAs expressed highly in pancreatic islet-like cell clusters differentiated from human embryonic stem cells. Cell Biol Int2011;35:2937.10.1042/CBI2009008120735361Search in Google Scholar

Chao C-C, Wu P-H, Huang H-C, et al. Downregulation of miR-199a/b-5p is associated with GCNT2 induction upon epithelial-mesenchymal transition in colon cancer. FEBS Lett 2017;591:1902–17.ChaoC-CWuP-HHuangH-C, Downregulation of miR-199a/b-5p is associated with GCNT2 induction upon epithelial-mesenchymal transition in colon cancer. FEBS Lett2017;591:190217.10.1002/1873-3468.1268528542779Search in Google Scholar

Nabi IR, Shankar J, Dennis JW. The galectin lattice at a glance. J Cell Science 2015;128:2213–19.NabiIRShankarJDennisJW.The galectin lattice at a glance. J Cell Science2015;128:221319.10.1242/jcs.15115926092931Search in Google Scholar

Arthur CM, Baruffi MD, Cummings RD, Stowell SR. Evolving mechanistic insights into galectin functions. In Stowell SR, Cummings RD, Eds. Galectins: methods and protocols (Methods in molecular biology, vol. 1207). New York: Springer, 2015:1–36.ArthurCMBaruffiMDCummingsRDStowellSR.Evolving mechanistic insights into galectin functions. In StowellSRCummingsRD, Eds. Galectins: methods and protocols (Methods in molecular biology, vol. 1207). New York: Springer, 2015:136.Search in Google Scholar

Coughlin S, Noviski M, Mueller JL, et al. An extracatalytic function of CD45 in B-cells is mediated by CD22. Proc Natl Acad Sci U S A 2015;112:E6515–24.CoughlinSNoviskiMMuellerJL, An extracatalytic function of CD45 in B-cells is mediated by CD22. Proc Natl Acad Sci U S A2015;112:E651524.10.1073/pnas.1519925112466436426561584Search in Google Scholar

Giovannone N, Liang J, Antonopoulos A, et al. Galectin-9 suppresses B cell receptor signaling and is regulated by I-branching of N-glycans. Nat Commun 2018;9:3287.GiovannoneNLiangJAntonopoulosA, Galectin-9 suppresses B cell receptor signaling and is regulated by I-branching of N-glycans. Nat Commun2018;9:3287.10.1038/s41467-018-05770-9609806930120234Search in Google Scholar

Lee Y-H, Liao Y-J, Huang C-H, Chang F-L, Fan T-H, Twu Y-C. Branched I antigens on leukemia cells enhanced sensitivity against natural killer-cell cytotoxicity through affecting the target-effector interaction. Transfusion 2017;57:1040–51.LeeY-HLiaoY-JHuangC-HChangF-LFanT-HTwuY-C.Branched I antigens on leukemia cells enhanced sensitivity against natural killer-cell cytotoxicity through affecting the target-effector interaction. Transfusion2017;57:104051.10.1111/trf.1398228337749Search in Google Scholar

Dong Z, Zhu X, Li Y, et al. Oncogenomic analysis identifies novel biomarkers for tumor stage myosis fungoides. Medicine 2018;97:e10871.DongZZhuXLiY, Oncogenomic analysis identifies novel biomarkers for tumor stage myosis fungoides. Medicine2018;97:e10871.10.1097/MD.0000000000010871639271329794791Search in Google Scholar

Boehler KR, Bhattacharya S, Kropp EM, et al. A human pluripotent stem cell surface N-glycoproteome resource reveals markers, extracellular epitopes and drug targets. Stem Cell Rep 2014;3:185–203.BoehlerKRBhattacharyaSKroppEM, A human pluripotent stem cell surface N-glycoproteome resource reveals markers, extracellular epitopes and drug targets. Stem Cell Rep2014;3:185203.10.1016/j.stemcr.2014.05.002411078925068131Search in Google Scholar

Noda S, Horiguchi K, Ichikawa H, Miyoshi H. Repopulating activity of ex vivo-expanded murine hematopoietic stem cells resides in the CD48-c-KIT+Sca-1+Lineage marker-cell population. Stem Cells 2008;26:646–55.NodaSHoriguchiKIchikawaHMiyoshiH.Repopulating activity of ex vivo-expanded murine hematopoietic stem cells resides in the CD48-c-KIT+Sca-1+Lineage marker-cell population. Stem Cells2008;26:64655.10.1634/stemcells.2007-062318079432Search in Google Scholar

Ji H, Ehrlich LIR, Seita J, et al. Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature 2010;467:338–42.JiHEhrlichLIRSeitaJ, Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature2010;467:33842.10.1038/nature09367295660920720541Search in Google Scholar

Heiskanen A, Hirvonen T, Salo H, et al. Glycomics of bone marrow-derived mesenchymal stem cells can be used to evaluate their cellular differentiation stage. Glycoconj J 2009;26:367–84.HeiskanenAHirvonenTSaloH, Glycomics of bone marrow-derived mesenchymal stem cells can be used to evaluate their cellular differentiation stage. Glycoconj J2009;26:36784.10.1007/s10719-008-9217-619037724Search in Google Scholar

Hirvonen T, Suila H, Kotovuori A, et al. The i blood group antigen as a marker for umbilical cord blood-derived mesenchymal stem cells. Stem Cells Dev 2012;21:455–64.HirvonenTSuilaHKotovuoriA, The i blood group antigen as a marker for umbilical cord blood-derived mesenchymal stem cells. Stem Cells Dev2012;21:45564.10.1089/scd.2011.040521933024Search in Google Scholar

Zhang H, Meng F, Wu S, et al. Engagement of I-branching β1,6 N-acetylglucosaminyltransferase 2 in breast cancer metastasis and TGF-β signaling. Cancer Res 2011;71:4846–56.ZhangHMengFWuS, Engagement of I-branching β1,6 N-acetylglucosaminyltransferase 2 in breast cancer metastasis and TGF-β signaling. Cancer Res2011;71:484656.10.1158/0008-5472.CAN-11-0414390341021750175Search in Google Scholar

Burchell J, Wang D, Taylor-Papadimitriou J. Detection of the tumour-associated antigens recognized by HMFG 1 and 2 in serum from patients with breast cancer. Int J Cancer 1984;34:763–8.BurchellJWangDTaylor-PapadimitriouJ.Detection of the tumour-associated antigens recognized by HMFG 1 and 2 in serum from patients with breast cancer. Int J Cancer1984;34:7638.10.1002/ijc.29103406056210253Search in Google Scholar

Dube VE, Haid M, Chmiel JS, Anderson B. Serum cold agglutinin and IgM levels in breast carcinoma. Breast Cancer Res Treat 1984;4:105–8.DubeVEHaidMChmielJSAndersonB.Serum cold agglutinin and IgM levels in breast carcinoma. Breast Cancer Res Treat1984;4:1058.10.1007/BF018063926331553Search in Google Scholar

Gaudet MM, Kuchenbaeker KB, Vijai J, et al. Identification of a BRCA2-specific modifier locus at 6p24 related to breast cancer risk. PLoS Genet 2013;9:e1003173.GaudetMMKuchenbaekerKBVijaiJ, Identification of a BRCA2-specific modifier locus at 6p24 related to breast cancer risk. PLoS Genet2013;9:e1003173.10.1371/journal.pgen.1003173360964723544012Search in Google Scholar

Mikami J, Tobisawa Y, Yoneyama T, et al. I-branching N-acetylglucosaminyltransferase regulates prostate cancer invasiness by enhancing alph5beta-1 integrin signaling. Cancer Sci 2016;107:359–68.MikamiJTobisawaYYoneyamaT, I-branching N-acetylglucosaminyltransferase regulates prostate cancer invasiness by enhancing alph5beta-1 integrin signaling. Cancer Sci2016;107:35968.10.1111/cas.12859481425826678556Search in Google Scholar

Gao C, Zhang H, Zhang Y, et al. Carbohydrate sequence of the prostate cancer-associated antigen F77 assigned by a mucin O-glycome designer array. J Biol Chem 2014;289:16462–77.GaoCZhangHZhangY, Carbohydrate sequence of the prostate cancer-associated antigen F77 assigned by a mucin O-glycome designer array. J Biol Chem2014;289:1646277.10.1074/jbc.M114.558932404741324753245Search in Google Scholar

Sweeney JG, Liang J, Antonopoulos A, et al. Loss of GCNT2/I-branched glycans enhances melanoma growth and survival. Nature Comm 2018;9:3368.SweeneyJGLiangJAntonopoulosA, Loss of GCNT2/I-branched glycans enhances melanoma growth and survival. Nature Comm2018;9:3368.10.1038/s41467-018-05795-0610565330135430Search in Google Scholar

Fidalgo F, Rodrigues TC, Silva AG, et al. Role of rare germline copy number variation in melanoma-prone patients. Future Oncol 2016;12:1345–57.FidalgoFRodriguesTCSilvaAG, Role of rare germline copy number variation in melanoma-prone patients. Future Oncol2016;12:134557.10.2217/fon.16.2227020340Search in Google Scholar

Yang X, Lei S, Long J, Liu X, Wu Q. MicroRNA-199a-5p inhibits tumor proliferation in melanoma by mediating HIF-1a. Mol Med Rep 2016;13:5241–47.YangXLeiSLongJLiuXWuQ.MicroRNA-199a-5p inhibits tumor proliferation in melanoma by mediating HIF-1a. Mol Med Rep2016;13:524147.10.3892/mmr.2016.520227122154Search in Google Scholar

Micevic G, Theodosakis N, Bosenberg M. Aberrant DNA methylation in melanoma: biomarker and therapeutic opportunities. Clin Epigenet 2017;9:34.MicevicGTheodosakisNBosenbergM.Aberrant DNA methylation in melanoma: biomarker and therapeutic opportunities. Clin Epigenet2017;9:34.10.1186/s13148-017-0332-8538106328396701Search in Google Scholar

eISSN:
1930-3955
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Medizin, Klinische Medizin, Laboratoriumsmedizin