Uneingeschränkter Zugang

Development of an automated water management system in orchards in southern Thailand

   | 15. Sept. 2020

Zitieren

The economy of Nakhon Si Thammarat, Thailand, is based on agriculture. It has a lot of farmland, including mangosteen and durian, which generate revenue for Nakhon Si Thammarat each year as high value (Office of Agricultural Economics, 2018). Mangosteen is approximately 1,800 million baht (personal contact with the Regional Office of Agricultural Economics, Thailand), but the quality of mangosteen and durian is not enough to market demands. The lack of a water management system for maintaining the mangosteen and the durian throughout the growth phase is the primary concern in this regard.

From the academic reports, such as spraying water droplets in the air can prevent the destruction and outbreak of thrips in the garden, which thrips is the pest of mangosteen. Thrips will absorb the water from the soft blossoms and soft fruit, causing flowers and fruits to have brown (Somporn na Nakorn, 2014). It provides a sufficient and consistent amount of water throughout the fruiting period of the mangosteen (personal contact with Chumphon Provincial Agricultural Extension Office in 2017). Water is an essential factor for the production of mangosteen as well as for obtaining a high quality and quantity product (Agricultural Research Development Agency, 2019).

The automated water management system encourages the farmers to replace traditional water management system. The system consists of the electronic technology, such as Arduino microcontrollers (Alahi et al., 2017; Alahi, Pereira-Ishak, Mukhopadhyay and Burkitt, 2018; Shilpa, 2018), sensor devices (Alahi et al., 2016; Alahi, Mukhopadhyay, and Burkitt, 2018; Ray, 2017; Rawal, 2017; Poursafar et al., 2017; Nag et al., 2019), and a smartphone that can operate, display, measure, and interact. The objective of this research was to build and develop an automatic water management system in orchards in order to increase the production with efficient water management systems in Nakhon Si Thammarat province. The proposed system is trialed in the field for farmers.

Materials and methods

The design of the automatic control system is shown in Figure 1. It consists of microcontroller board, NodeMCU ESP-WROOM-32, Wi-Fi, and Bluetooth, connected to the pump, solenoid valve, and sensors. Open-close pumps, solenoid valves, and sensors are used with a smartphone connected to the internet via Wi-Fi using the application Blynk.

Figure 1:

An automated water management system.

The demonstration of open-close pumps and solenoid valves of automatic water management systems in orchards using smartphones are shown in Figure 2. The design of the water pipe system and a set of 6-valves automatic water management systems in orchards are shown in Figure 3. This demonstration set was created to demonstrate the farmers how to use the system, as shown in Figure 4.

Figure 2:

The demonstration set of 6-valves automatic water management system by using a smart phone.

Figure 3:

The design of the water pipe system (6-valves automatic water management systems).

Figure 4:

The real 6-valves automatic water management system for installing in the field.

Figure 5 shows the electronic circuit for controlling the automatic water management system in an orchard, and Figure 6 shows the complete equipment installation. The system was installed in a farmer’s field in Phrom Khiri District, Nakhon Sri Thammarat Province for real use in the durian garden.

Figure 5:

The schematic diagram of a control circuit for automatic water management system in orchards.

Figure 6:

The 6-valves automatic control system in orchards.

In this study, questionnaires were used to determine the farmers’ satisfaction level regarding automatic water management systems in orchards, and transfer the technology to the farmers in Nakhon Si Thammarat Province.

Results and discussion

Figure 7 shows the developed system for the demonstration purpose, which can be installed in the sampling field. There are two techniques of the water distribution system. One is hand-on-off technique installed below the 1.27 cm water pipes. Another technique is an electric on-off system. It has also used 24 VDC, 0.635 cm solenoid valve, 220 V AC pump, relay, and microcontroller board. It is a 5 V 8-channel relay interface microcontroller board. Relay 1–relay 6 connects to the solenoid valve 1–solenoid valve 6, respectively. Relay 7 is connected to relay 8, which has 24 volts, then it is connected to a 220 V electric water pump through a magnetic.

Figure 7:

Overall view of the demonstration set of 6-valves automatic water management systems.

The smartphone controls the system via Blynk server, which connects to the internet via Wi-Fi using application Blynk. The system was tested by sending a command from the smartphone to control the opening and closing of the solenoids valves in the sampling field. It was found that the pump and solenoid valve worked correctly and thus this system can be operated via a smartphone.

Figures 8 and 9 show the 6-valves automatic water management system in the mangosteen garden. The on-off water system was ordered through a smartphone installed in the mangosteen plantation. The water sources were groundwater and wells. Water was sprayed in the air approximately 0.5 meters higher than the trunk to control the temperature and relative humidity of the air. The water pipes were placed in two different locations, 0.5 meters above the ground, and 1 meter above of each trunk. The automatic control system is demonstrated similarly as 6-valves automatic water management systems in orchards. The results showed that the system can be operated via a smartphone. According to the farmer, the working status of the pump and solenoid valve was displayed correctly, as shown in Figure 10.

Figure 8:

Using of 6-valves automatic water management system in the mangosteen garden.

Figure 9:

Automatic control system set of 6-valves automatic water management system in the mangosteen garden.

Figure 10:

Farmers using smartphones to control the water management system in the mangosteen garden.

The construction and development of the 2-valves automatic water management system in the durian garden are shown in Figures 11 and 12. There are two techniques of water distribution systems, which include the manual (hand) on-off water systems. Two sprinkler water pipes were placed 1 m above of the trunk, and 0.5 m above the ground. The control pump used solid-state relays, which is an electronic switch for increasing the service for a long time. The automatic water management system in the durian garden also has a rain sensor. When it rains, the water pump stops working.

Figure 11:

Using of 2-valves automatic water management system in the durian garden.

Figure 12:

Automatic control system set of 6-valves water management system in the durian garden.

The test result of the 2-valves automatic water management system in the durian garden confirms that the system can be operated via a smartphone effectively. This 2-valves system also shows the working status of pumps and solenoid valves correctly. A similar result was observed in the case of the 6-valves automatic water management system in the mangosteen garden. If it rains, the automatic water management system in the durian garden stops the solenoid valve.

In total, 79 farmers in Nakhon Si Thammarat province tested this proposed system. Farmers’ satisfaction level with the automatic water management demonstration system was assessed in fruit orchards. The results of the satisfaction assessment are shown in Table 1. The satisfaction level of the technology transfer recipients regarding the on and off system of water through smartphones was an average of 4.61, which is 94.25%. The satisfaction level for the safety of on and off system of water through smartphones was an average of 4.57, representing 92.13%. In both cases, the satisfaction levels were very high.

Satisfaction of the recipients of automatic water management system in orchards.

Opinion Average SD Percentage Interpret satisfaction
1. Knowledge and understanding before the transfer of technology 3.34 0.52 88.95 Moderate
2. Knowledge and understanding after the transfer of technology 4.32 0.51 92.33 High
3. Training on using of smartphone to operate the water automation system 4.47 0.42 89.47 High
4. The convenience of water on-off system via smartphone 4.61 0.36 94.25 Higher
5. Safety of water on-off system through smartphones 4.57 0.41 92.13 Higher
6. The cost of water on-off system via smartphone 4.53 0.38 90.55 Higher
7. The response speed of the command to turn on and turn off the water via smartphone 4.52 0.37 90.24 Higher
8. Using knowledge for good purpose 4.56 0.39 91.25 Higher

For creating an automatic water management system in mangosteen and durian gardens, it is needed to build two systems; an open-close system by hand, and an electric on-off system ordered via smartphone. If the internet system has a problem, farmers can turn on or turn off the water manually as needed. Electric water on-off system order via smartphone connects to solenoid valves, water pumps, and sensors. This system is easy to build, and it requires cheap devices. Furthermore, it uses free software. The system works correctly as the users want. Because of these reasons, the application of Microcontroller IoT and sensor in agriculture is widely used (Suganya et al., 2017; Muangprathuba et al., 2019; Khoa et al., 2019).

Conclusion

The development of automatic water management systems in orchards has been conducted to improve the water distribution systems. It is an open-close valve system which can be controlled by hand and through smartphone at the specified time. The farmers can use the proposed system in the mangosteen and durian gardens to manage the watering system effectively. Based on the experimental results, it is noted that the farmers are satisfied with the convenience, cost, and safety of the system. Further research can be conducted on the development of water storing system through smart farming in mangostene farms in Nakhon Si Thammarat province in where lack of water is a problem in dry season. Research on development of automatic water on-off system based on soil moisture level should be conducted in mangostene farms in southern Thailand. Based on the soil moisture information, the system can be developed as auto controlled smart system. In addition to that, IoT controlled water management system will be developed for further improvement of the large farming area.

eISSN:
1178-5608
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
Volume Open
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere