Uneingeschränkter Zugang

The use of neuromonitoring in descending and thoraco-abdominal aortic aneurysm surgery Literature Review


Zitieren

Griepp RB, Ergin MA, Galla JD, Lansman S, Khan N, Quintana C, et al. Looking for the artery of Adamkiewicz: a quest to minimize paraplegia after operations for aneurysms of the descending thoracic and thoracoabdominal aorta. J Thorac Cardiovasc Surg. 1996;112:1202-15J. Search in Google Scholar

Safi HJ, Campbell MP, Miller CC 3rd, Iliopoulos DC, Khoynezhad A, Letsou GV, et al. Cerebral spinal fluid drainage and distal aortic perfusion decrease the incidence of neurological deficit: the results of 343 descending and thoracoabdominal aortic aneurysm repairs. Eur J Vasc Endovasc Surg. 1997; 14:118-24. Search in Google Scholar

Svensson LG, Crawford ES, Hess KR, Coselli JS, Safi HJ. Experience with 1509 patients undergoing thoracoabdominal aortic operations. J Vasc Surg. 1993;17:357-70 Search in Google Scholar

Zoli S, Roder F, Etz CD, Brenner RM, Bodian CA, Lin HM, et al. Predicting the risk of paraplegia after thoracic and thoracoabdominal aneurysm repair. Ann Thorac Surg. 2010;90:1237-44 Search in Google Scholar

1. Coselli JS, LeMaire SA, Köksoy C, Schmittling ZC, Curling PE. Cerebrospinal fluid drainage reduces paraplegia after thoracoabdominal aortic aneurysm repair: results of a randomized clinical trial. J Vasc Surg. 2002;35:631-9. Search in Google Scholar

Safi HJ, Miller CC 3rd, Carr C, Iliopoulos DC, Dorsay DA, Baldwin JC. Importance of intercostal artery reattachment during thoracoabdominal aortic aneurysm repair. J Vasc Surg. 1998;27:58-66 Search in Google Scholar

1 Safi HJ, Hess KR, Randel M, Iliopoulos DC, Baldwin JC, Mootha RK, et al. Cerebrospinal fluid drainage and distal aortic perfusion: reducing neurologic complications in repair of thoracoabdominal aortic aneurysm types I and II. J Vasc Surg. 1996;23:223-8 Search in Google Scholar

1 Jacobs MJ, Mess W, Mochtar B, Nijenhuis RJ, Statius van Eps RG, Schurink GW. The value of motor evoked potentials in reducing paraplegia during thoracoabdominal aneurysm repair. J Vasc Surg. 2006;43:239-46 Search in Google Scholar

Eisen A. Clinical electrophysiology of the upper and lower motor neuron in amyotrophic lateral sclerosis. Semin Neurol. 2001;21:141-54. Search in Google Scholar

Dommisse GF. The blood supply of the spinal cord. A critical vascular zone in spinal surgery. J Bone Joint Surg Br. 1974;56:225-35. Search in Google Scholar

Jacobs MJ, de Mol BA, Elenbaas T, Mess WH, Kalkman CJ, Schurink GW, et al. Spinal cord blood supply in patients with thoracoabdominal aortic aneurysms. J Vasc Surg. 2002;35:30-7 Search in Google Scholar

Acher CW, Wynn MM, Mell MW, Tefera G, Hoch JR. A quantitative assessment of the impact of intercostal artery reimplantation on paralysis risk in thoracoabdominal aortic aneurysm repair. Ann Surg. 2008;248:529-40 Search in Google Scholar

Patton HD, Amassian VE. Single and multiple unit analysis of cortical stage of pyramidal tract activation. J Neurophysiol 1954; 17: 345–363. Search in Google Scholar

Merton, P.A. and Morton, H.B. Electrical stimulation of human motor and visual cortex through the scalp. J. Physiol. (Lond.), 1980b, 305: 9– 10. Search in Google Scholar

A.T. Barker, R. Jalinous, I.L. Freenston, J.A. Jarratt. Clinical evaluation of conduction time measurements in central motor pathways using magnetic stimulation of human brain Lancet, 1 (1985), pp. 1325–1326 Search in Google Scholar

Macdonald DB, Skinner S, Shils J, Yingling C; American Society of Neurophysiological Monitoring. Intraoperative motor evoked potential monitoring - a position statement by the American Society of Neurophysiological Monitoring. Clin Neurophysiol. 2013;124:2291-316 Search in Google Scholar

Macdonald DB. Intraoperative motor evoked potential monitoring: overview and update. J Clin Monit Comput. 2006;20:347-77 Search in Google Scholar

Nuwer MR, Emerson RG, Galloway G, Leggatt AD, Lopez J, Minahan R, et al. Evidence-based guideline update: Intraoperative spinal monitoring with somatosensory and transcranial electrical motor evoked potentials. Neurology 2012; 78: 585-589 Search in Google Scholar

Rossini PM, Berardelli A, Deuschl G, Hallett M, Maertens de Noordhout AM, et al. Applications of magnetic cortical stimulation. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl. 1999;52:171-85. Search in Google Scholar

Vucic S, Kiernan MC. Utility of transcranial magnetic stimulation in delineating amyotrophic lateral sclerosis pathophysiology. Handb Clin Neurol. 2013;116:561-75. Search in Google Scholar

Meyer S, Karttunen AH, Thijs V, Feys H, Verheyden G. How Do Somatosensory Deficits in the Arm and Hand Relate to Upper Limb Impairment, Activity, and Participation Problems After Stroke? A Systematic Review. Phys Ther. 2014 Apr 24. [Epub ahead of print] PubMed PMID: 24764072. Search in Google Scholar

Schlaeger R, Schindler C, Grize L, Dellas S, Radue EW, Kappos L, et al. Combined visual and motor evoked potentials predict multiple sclerosis disability after 20 years. Mult Scler. 2014 Feb 26. [Epub ahead of print] PubMed PMID:24574192. Search in Google Scholar

Hiratzka LF, Bakris GL, Beckman JA, Bersin RM, Carr VF, Casey DE Jr, American College of Cardiology Foundation; 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with thoracic aortic disease: executive summary. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for Vascular Medicine. Catheter Cardiovasc Interv. 2010 Aug 1;76:E43-86. Search in Google Scholar

Gazzeri R, Faiola A, Neroni M, Fiore C, Callovini G, Pischedda M, et al. Safety of intraoperative electrophysiological monitoring (TES and EMG) for spinal and cranial lesions. Surg Technol Int. 2013 Sep;23:296-306. Search in Google Scholar

Goshgarian HG. Blood Supply of the Spinal Cord. In: Lin VW, Cardenas DD, Cutter NC, et al., editors. Spinal Cord Medicine: Principles and Practice. New York: Demos Medical Publishing; 2003. Available from: http://www.ncbi.nlm.nih.gov/books/NBK8851/ Search in Google Scholar

Freeman TL, Johnson E, Freeman ED, et al. Somatosensory Evoked Potentials (SSEP) In: Cuccurullo S, editor. Physical Medicine and Rehabilitation Board Review. New York: Demos Medical Publishing: http://www.ncbi.nlm.nih.gov/books/NBK27201/">http://www.ncbi.nlm.nih.gov/books/NBK27201/">http://www.ncbi.nlm.nih.gov/books/NBK27201/ Search in Google Scholar

Cruccu G, Aminoff MJ, Curio G, Guerit JM, Kakigi R, Mauguiere Fet al. Recommendations for the clinical use of somatosensory-evoked potentials. Clin Neurophysiol. 2008;119:1705-19. Search in Google Scholar

Etz CD, Kari FA, Mueller CS, Silovitz D, Brenner RM, Lin HM, et al. The collateral network concept: a reassessment of the anatomy of spinal cord perfusion. J Thorac Cardiovasc Surg. 2011;141:1020-8. Search in Google Scholar

T. Davies. The history of near infrared spectroscopic analysis: Past, present and future “From sleeping technique to the morning star of spectroscopy”. 1998;26:17-19 Search in Google Scholar

LeMaire SA, Ochoa LN, Conklin LD, Widman RA, Clubb FJ Jr, Undar A,et al. Transcutaneous near-infrared spectroscopy for detection of regional spinal ischemia during intercostal artery ligation: preliminary experimental results. J Thorac Cardiovasc Surg. 2006;132:1150-5 Search in Google Scholar

Banaji M, Mallet A, Elwell CE, Nicholls P, Tachtsidis I, Smith M, Cooper CE. Modelling of mitochondrial oxygen consumption and NIRS detection of cytochrome oxidase redox state. Adv Exp Med Biol. 2010;662:285-91. Search in Google Scholar

Boushel R, Langberg H, Olesen J, Gonzales-Alonzo J, Bülow J, Kjaer M. Monitoring tissue oxygen availability with near infrared spectroscopy (NIRS) in health and disease. Scand J Med Sci Sports. 2001;11:213-22 Search in Google Scholar

Hampton DA, Schreiber MA. Near infrared spectroscopy: clinical and research uses. Transfusion. 2013;53 Suppl 1:52S-58S Search in Google Scholar

Wolf M, Ferrari M, Quaresima V. Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications. J Biomed Opt. 2007;12:062104 Search in Google Scholar

Wakimoto MM, Kadosaki M, Nagata H, Suzuki KS. The usefulness of near-infrared spectroscopy in the anesthetic management of endovascular aortic aneurysm repair. J Anesth. 2012;26:932-5 Search in Google Scholar

Moerman A, Van Herzeele I, Vanpeteghem C, Vermassen F, François K, Wouters P. Near-infrared spectroscopy for monitoring spinal cord ischemia during hybrid thoracoabdominal aortic aneurysm repair. J Endovasc Ther. 2011;18:91-5 Search in Google Scholar

Demir A, Erdemli Ö, Ünal U, Taşoğlu í. Near-infrared spectroscopy monitoring of the spinal cord during type B aortic dissection surgery. J Card Surg. 2013;28:291-4 Search in Google Scholar

Etz CD, von Aspern K, Gudehus S, Luehr M, Girrbach FF, Ender J, et al. Near-infrared spectroscopy monitoring of the collateral network prior to, during, and after thoracoabdominal aortic repair: a pilot study. Eur J Vasc Endovasc Surg. 2013;46:651-6. Search in Google Scholar

Badner NH, Nicolaou G, Clarke CF, Forbes TL. Use of spinal nearinfrared spectroscopy for monitoring spinal cord perfusion during endovascular thoracic aortic repairs. J Cardiothorac Vasc Anesth. 2011;25:316-9 Search in Google Scholar

eISSN:
1178-5608
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
Volume Open
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere