Road Obstacle Object Detection Based on Improved YOLO V4
, , , und
22. Feb. 2021
Über diesen Artikel
Online veröffentlicht: 22. Feb. 2021
Seitenbereich: 18 - 25
DOI: https://doi.org/10.21307/ijanmc-2021-023
Schlüsselwörter
© 2021 Xiao Zuo et al., published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Comparison of test results
AP(%) | Car | Bus | Person | Motorbike | Bicycle | mAP(%) |
---|---|---|---|---|---|---|
yolo v4 | 0.98 | 0.93 | 0.92 | 0.81 | 0.51 | 82.95 |
Improved yolo v4 | 0.99 | 0.93 | 0.92 | 0.81 | 0.58 | 84.98 |
Environment configuration
Hardware environment | processor |
Intel(R) XEON W-2133 |
---|---|---|
Software Environment | operating system | Ubuntu 16.04 |
Deep learning framework | Tensorflow-gpu | |
Programming language | Python | |
translater | Pycharm2019.1 |
Main network parameter values
Parameter | Value | Parameter | Value |
---|---|---|---|
LEARN_RATE_INIT | 1e-4 | MOVING_AVE_DECAY | 0.9999 |
LEARN_RATE_END | 1e-6 | STAGE_EPOCHS | 100 |