Uneingeschränkter Zugang

Review of Anomaly Detection Based on Log Analysis

  
11. Jan. 2021

Zitieren
COVER HERUNTERLADEN

Yuan D, Park S, Huang P, Liu Y, Lee MM, Tang X, Zhou Y, Savage S. Be conservative: enhancing failure diagnosis with proactive logging. In: Proc. of the 10th Symp. on Operating Systems Design and Implementation (OSDI). 2012. 293~306.YuanDParkSHuangPLiuYLeeMMTangXZhouYSavageSBe conservative: enhancing failure diagnosis with proactive logging. In:Proc. of the 10th Symp. on Operating Systems Design and Implementation (OSDI)2012293306Search in Google Scholar

Yuan D, Park S, Zhou Y. Characterizing logging practices in open-source software. In: Proc. of the 2012 Int’l Conf. on Software Engineering. 2012. 102~112. [doi: 10.1109/ICSE. 2012.6227202].YuanDParkSZhouYCharacterizing logging practices in open-source software. In:Proc. of the 2012 Int’l Conf. on Software Engineering2012102112. [doi: 10.1109/ICSE. 2012.6227202]Search in Google Scholar

Peng Dong. Intelligent operation and maintenance: building a large-scale distributed AIOps system from zero. Electronic Industry Press, 2018. 7 ISBN 978-7-121-34663-7 p198-p199.PengDongIntelligent operation and maintenance: building a large-scale distributed AIOps system from zeroElectronic Industry Press20187978-7-121-34663-7p198p199Search in Google Scholar

Varun Chandola, Arindam Banerjee, Vipin Kumar. Anomaly Detection: A Survey[J]. Acm Computing Surveys, 2009, 41(3).VarunChandolaArindamBanerjeeVipinKumarAnomaly Detection: A Survey[J]Acm Computing Surveys200941310.1145/1541880.1541882Search in Google Scholar

Davis J J, Clark A J. Data preprocessing for anomaly based network intrusion detection: A review[J]. Computers & Security, 2011, 30(6-7):353-375.DavisJ JClarkA JData preprocessing for anomaly based network intrusion detection: A review[J]Computers & Security2011306-735337510.1016/j.cose.2011.05.008Search in Google Scholar

Q. Lin, H. Zhang, J. Lou, Y. Zhang and X. Chen, “Log Clustering Based Problem Identification for Online Service Systems,” 2016 IEEE/ACM 38th International Conference on Software Engineering Companion (ICSE-C), Austin, TX, 2016, pp. 102-111.Q.LinH.ZhangJ.LouY.Zhang and X.Chen, “Log Clustering Based Problem Identification for Online Service Systems,”2016 IEEE/ACM 38th International Conference on Software Engineering Companion (ICSE-C)Austin, TX201610211110.1145/2889160.2889232Search in Google Scholar

Pecchia A, Cotroneo D, Kalbarczyk Z, et al. Improving Log-based Field Failure Data Analysis of multi-node computing systems[C]. IEEE, 2011.PecchiaACotroneoDKalbarczykZImproving Log-based Field Failure Data Analysis of multi-node computing systems[C]IEEE201110.1109/DSN.2011.5958210Search in Google Scholar

Tambe R, Karabatis G, Janeja V P. Context aware discovery in web data through anomaly detection[J]. International Journal of Web Engineering and Technology, 2015, 10(1):3.TambeRKarabatisGJanejaV PContext aware discovery in web data through anomaly detection[J]International Journal of Web Engineering and Technology2015101310.1504/IJWET.2015.069348Search in Google Scholar

Wang Xiaodong, Zhao Yining, Xiao Haili, Chi Xuebin, Wang Xiaoning. Detection method of abnormal log flow pattern in multi-node system [J/OL]. Journal of Software: 1-15 [2019-12-24].WangXiaodongZhaoYiningXiaoHailiChiXuebinWangXiaoningDetection method of abnormal log flow pattern in multi-node system [J/OL]Journal of Software115[2019-12-24]Search in Google Scholar

Wang Zhiyuan, Ren Chongguang, Chen Rong, Qin Li. Anomaly detection technology based on log template[J]. Intelligent Computers and Applications, 2018, 8(05): 17-20+24.WangZhiyuanRenChongguangChenRongQinLiAnomaly detection technology based on log template[J]Intelligent Computers and Applications2018805172024Search in Google Scholar

Son S, Gil MS, Moon YS. [IEEE 2017 IEEE International Conference on Big Data and Smart Computing (BigComp)-Jeju Island, South Korea (2017.2.13-2017.2.16)] 2017 IEEE International Conference on Big Data and Smart Computing (BigComp)-Anomaly detection for big log data using a Hadoop ecosystem[J]. 2017:377-380.SonSGilMSMoonYS[IEEE 2017 IEEE International Conference on Big Data and Smart Computing (BigComp)-Jeju Island, South Korea (2017.2.13-2017.2.16)] 2017 IEEE International Conference on Big Data and Smart Computing (BigComp)-Anomaly detection for big log data using a Hadoop ecosystem[J]2017377380Search in Google Scholar

Fu, Q., Lou, JG, Wang, Y., & Li, J. (2009). Execution anomaly detection in distributed systems through unstructured log analysis. In Proceedings of the 2009 ninth IEEE international conference on data mining, ICDM ’09, (pp. 149–158). Washington, DC: IEEE Computer Society. doi:10.1109/ICDM.2009.60.FuQ.LouJGWangY., & LiJ.2009Execution anomaly detection in distributed systems through unstructured log analysisIn Proceedings of the 2009 ninth IEEE international conference on data mining, ICDM ’09, (pp.149158Washington, DCIEEE Computer Society10.1109/ICDM.2009.60Open DOISearch in Google Scholar

Xu W, et al. Large-scale system problems detection by mining console logs[J]. Proceedings of the Acm Sigops Symposium on Operating Systems Principles Big Sky Mt, 2013:2009.XuWLarge-scale system problems detection by mining console logs[J]Proceedings of the Acm Sigops Symposium on Operating Systems Principles Big Sky Mt2013200910.1145/1629575.1629587Search in Google Scholar

Ilenia Fronza, Alberto Sillitti, Giancarlo Succi, Mikko Terho, Jelena Vlasenko. Failure prediction based on log files using Random Indexing and Support Vector Machines[J]. Journal of Systems and Software, 2013, 86(1):2-11.IleniaFronzaAlbertoSillittiGiancarloSucciMikkoTerhoJelenaVlasenkoFailure prediction based on log files using Random Indexing and Support Vector Machines[J]Journal of Systems and Software201386121110.1016/j.jss.2012.06.025Search in Google Scholar

Peng W, Li T, Ma S. Mining logs files for data-driven system management. ACM SIGKDD Explorations Newsletter, 2005, 7(1):44-51.PengWLiTMaSMining logs files for data-driven system managementACM SIGKDD Explorations Newsletter200571445110.1145/1089815.1089822Search in Google Scholar

Zhang Luqing. Web attack data mining algorithm based on outlier anomaly[J]. Ship Electronic Engineering, 2018, 38(09): 105-110.ZhangLuqingWeb attack data mining algorithm based on outlier anomaly[J]Ship Electronic Engineering20183809105110Search in Google Scholar

Breier J, Jana Branišová. A Dynamic Rule Creation Based Anomaly Detection Method for Identifying Security Breaches in Log Records[J]. Wireless Personal Communications, 2015, 94(3):1-15.BreierJJanaBranišováA Dynamic Rule Creation Based Anomaly Detection Method for Identifying Security Breaches in Log Records[J]Wireless Personal Communications2015943115Search in Google Scholar

Zhang Zhongping, Liang Yongxin. Algorithm for mining outliers in flow data based on anti-k nearest neighbors[J]. Computer Engineering, 2009, 35(12): 11-13.ZhangZhongpingLiangYongxinAlgorithm for mining outliers in flow data based on anti-k nearest neighbors[J]Computer Engineering200935121113Search in Google Scholar

Grace, L., Maheswari, V., & Nagamalai, D. (2011). Web log data analysis and mining. In N. Meghanathan, B. Kaushik, & D. Nagamalai (Eds.), Advanced computing, communications in computer and information science (Vol. 133, pp. 459–469). Berlin: Springer.GraceL.MaheswariV., & NagamalaiD.2011Web log data analysis and mining. InN.MeghanathanB.Kaushik, & D.Nagamalai(Eds.)Advanced computing, communications in computer and information science133459469BerlinSpringerSearch in Google Scholar

Liang Bao, Qian Li, Peiyao Lu, Jie Lu, Tongxiao Ruan, Ke Zhang. (2018). Execution anomaly detection in large-scale systems through console log analysis. The Journal of Systems & Software 143 (2018) 172–186.LiangBaoQianLiPeiyaoLuJieLuTongxiaoRuanKeZhang2018Execution anomaly detection in large-scale systems through console log analysisThe Journal of Systems & Software143201817218610.1016/j.jss.2018.05.016Search in Google Scholar

Liu F T, Ting K M, Zhou Z H. Isolation-Based Anomaly Detection[J]. ACM Transactions on Knowledge Discovery from Data, 2012, 6(1):1-39.LiuF TTingK MZhouZ HIsolation-Based Anomaly Detection[J]ACM Transactions on Knowledge Discovery from Data20126113910.1145/2133360.2133363Search in Google Scholar

Wang Jinghua, Zhao Xinxiang, Zhang Guoyan, Liu Jianyin. NLOF: A new density-based local outlier detection algorithm [J]. Computer Science, 2013, 40(08): 181-185.WangJinghuaZhaoXinxiangZhangGuoyanLiuJianyinNLOF: A new density-based local outlier detection algorithm [J]Computer Science20134008181185Search in Google Scholar

Li Shaobo, Meng Wei, Wei Jinglei. Density-based abnormal data detection algorithm GSWCLOF[J]. Computer Engineering and Applications, 2016, 52(19): 7-11.LiShaoboMengWeiWeiJingleiDensity-based abnormal data detection algorithm GSWCLOF[J]Computer Engineering and Applications20165219711Search in Google Scholar

Wang Qian, Liu Shuzhi. Improvement of local outlier data mining method based on density [J]. Application Research of Computers, 2014, 31(06): 1693-1696+1701.WangQianLiuShuzhiImprovement of local outlier data mining method based on density [J]Application Research of Computers2014310616931696+1701Search in Google Scholar

Pukelsheim F. The Three Sigma Rule[J]. The American Statistician, 1994, 48(2):88-91.PukelsheimFThe Three Sigma Rule[J]The American Statistician19944828891Search in Google Scholar

Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Informatik, Informatik, andere