Uneingeschränkter Zugang

NUMERICAL ANALYSIS OF THE RESPONSE OF PILE-RAFT SYSTEMS CONSIDERING THE APPLICATION OF CEMENT AND POLYPROPYLENE FIBER TREATMENT

   | 18. Okt. 2019

Zitieren

Panganayi, C., Ogata, H., Hattori, K., & Tom, T (2011). Interaction between engineered cementitious composites lining and foundation subsurface drain. Advances in Civil Engineering, doi:10.1155/2011/280717. Panganayi C. Ogata H. Hattori K. , & Tom T ( 2011 ). Interaction between engineered cementitious composites lining and foundation subsurface drain . Advances in Civil Engineering , doi: 10.1155/2011/280717 . Open DOISearch in Google Scholar

Hasanzadeh, A., & Janalizadeh Choobbasti, A. (2016). Estimation of bearing capacity of circular footings on clay stabilized with granular soil: case study. International Journal of Civil Engineering and Geo-Environmental (IJCEG), 6, 47–54. Hasanzadeh A. , & Janalizadeh Choobbasti A. ( 2016 ). Estimation of bearing capacity of circular footings on clay stabilized with granular soil: case study . International Journal of Civil Engineering and Geo-Environmental (IJCEG) , 6 , 47 54 . Search in Google Scholar

Basha, E.A., Hashim, R., Mahmud, H.B., & Muntohar, A.S. (2005).Stabilization of residual soil with rice husk ash and cement. Construction and Building Materials, 19(6), 448–453. Basha E.A. Hashim R. Mahmud H.B. , & Muntohar A.S. ( 2005 ). Stabilization of residual soil with rice husk ash and cement . Construction and Building Materials , 19 ( 6 ), 448 453 . 10.1016/j.conbuildmat.2004.08.001 Search in Google Scholar

Rasouli, H., Takhtfiroozeh, H., Taghavi Ghalesari, A., & Hemati, R. (2017). Bearing capacity improvement of shallow foundations using cement-stabilized sand. Key Engineering Materials, 723, 795–800. Rasouli H. Takhtfiroozeh H. , Taghavi Ghalesari A. , & Hemati R. ( 2017 ). Bearing capacity improvement of shallow foundations using cement-stabilized sand . Key Engineering Materials , 723 , 795 800 . 10.4028/www.scientific.net/KEM.723.795 Search in Google Scholar

Prusinski, J., & Bhattacharja, S. (1999). Effectiveness of Portland cement and lime in stabilizing clay soils. Transportation Research Record: Journal of the Transportation Research Board, 1652, 215–227, https://doi.org/10.3141/1652-28. Prusinski J. , & Bhattacharja S. ( 1999 ). Effectiveness of Portland cement and lime in stabilizing clay soils . Transportation Research Record: Journal of the Transportation Research Board , 1652 , 215 227 , https://doi.org/10.3141/1652-28 . 10.3141/1652-28 Search in Google Scholar

Hasanzadeh, A., & Shooshpasha, I. (2019). Effects of silica fume on cemented sand using ultrasonic pulse velocity. Journal of Adhesion Science and Technology, doi: 10.1080/01694243.2019.1582890. Hasanzadeh A. , & Shooshpasha I. ( 2019 ). Effects of silica fume on cemented sand using ultrasonic pulse velocity . Journal of Adhesion Science and Technology , doi: 10.1080/01694243.2019.1582890 . Open DOISearch in Google Scholar

Diambra, A., Ibraim, E., Muir Wood, D., & Russell, A.R. (2010). Fibre reinforced sands: experiments and modeling. Geotextiles and Geomembranes, 28(3), 238–250. Diambra A. Ibraim E. Muir Wood D. , & Russell A.R. ( 2010 ). Fibre reinforced sands: experiments and modeling . Geotextiles and Geomembranes , 28 ( 3 ), 238 250 . 10.1016/j.geotexmem.2009.09.010 Search in Google Scholar

EsmaeilpourShirvani, N., TaghaviGhalesari, A., Tabari, M. K., & Choobbasti, A. J. (2019). Improvement of the engineering behavior of sand-clay mixtures using kenaf fiber reinforcement. Transportation Geotechnics, 19, 1–8. EsmaeilpourShirvani N. TaghaviGhalesari A. Tabari M. K. , & Choobbasti A. J. ( 2019 ). Improvement of the engineering behavior of sand-clay mixtures using kenaf fiber reinforcement . Transportation Geotechnics , 19 , 1 8 . 10.1016/j.trgeo.2019.01.004 Search in Google Scholar

Guido, VA., Chang, D.K., & Sweeney, A. (1986). Comparison of geogrid and geotextile reinforced earth slabs. Canadian Geotechnical Journal, 23(4), 435–440. Guido VA. Chang D.K. , & Sweeney A. ( 1986 ). Comparison of geogrid and geotextile reinforced earth slabs . Canadian Geotechnical Journal , 23 ( 4 ), 435 440 . 10.1139/t86-073 Search in Google Scholar

Lovisa, J., Shukla, S.K., & Sivakugan, N. (2010). Behaviour of prestressed geotextile-reinforced sand bed supporting a loaded circular footing. Geotextiles and Geomembranes, 28(1), 23–32. Lovisa J. Shukla S.K. , & Sivakugan N. ( 2010 ). Behaviour of prestressed geotextile-reinforced sand bed supporting a loaded circular footing . Geotextiles and Geomembranes , 28 ( 1 ), 23 32 . 10.1016/j.geotexmem.2009.09.002 Search in Google Scholar

Maher, M.H., & Gray, D.H. )1990(. Static response of sands reinforced with randomly distributed fibers. Journal of Geotechnical Engineering, ASCE 116(11), 1661–1677. Maher M.H. , & Gray D.H. ) 1990 (. Static response of sands reinforced with randomly distributed fibers . Journal of Geotechnical Engineering, ASCE 116 ( 11 ), 1661 1677 . 10.1061/(ASCE)0733-9410(1990)116:11(1661) Search in Google Scholar

Puppala, A., & Musenda, C. (2000). Effects of fiber reinforcement on strength and volume change in expansive soils. Transportation Research Record: Journal of the Transportation Research Board, 1736, 134-140, https://doi.org/10.3141/1736-17. Puppala A. , & Musenda C. ( 2000 ). Effects of fiber reinforcement on strength and volume change in expansive soils . Transportation Research Record: Journal of the Transportation Research Board , 1736 , 134 - 140 , https://doi.org/10.3141/1736-17 . 10.3141/1736-17 Search in Google Scholar

Miller, C.J., & Rifai, S. (2004). Fiber reinforcement for waste containment soil liners. Journal of Environmental Engineering, 130(8), 981–985. Miller C.J. , & Rifai S. ( 2004 ). Fiber reinforcement for waste containment soil liners . Journal of Environmental Engineering , 130 ( 8 ), 981 985 . 10.1061/(ASCE)0733-9372(2004)130:8(891) Search in Google Scholar

Consoli, N.C., Casagrande, M.D.T., & Coop, M.R. (2007). Performance of fibre-reinforced sand at large shear strains. Geotechnique, 57(9), 751–756. Consoli N.C. Casagrande M.D.T. , & Coop M.R. ( 2007 ). Performance of fibre-reinforced sand at large shear strains . Geotechnique , 57 ( 9 ), 751 756 . 10.1680/geot.2007.57.9.751 Search in Google Scholar

Hejazi, S.M., Sheikhzadeh, M., Abtahi, S.M., & Zadhoush, A. (2012). A simple review of soil reinforcement by using natural and synthetic fibers. Construction and Building Materials, 30, 100–116. Hejazi S.M. Sheikhzadeh M. Abtahi S.M. , & Zadhoush A. ( 2012 ). A simple review of soil reinforcement by using natural and synthetic fibers . Construction and Building Materials , 30 , 100 116 . 10.1016/j.conbuildmat.2011.11.045 Search in Google Scholar

Li, C., & Zornberg, G. (2013). Mobilization of reinforcement forces in fiber-reinforced soil. Journal of Geotechnical and Geoenvironmental Engineering, 139(1), 107–115. Li C. , & Zornberg G. ( 2013 ). Mobilization of reinforcement forces in fiber-reinforced soil . Journal of Geotechnical and Geoenvironmental Engineering , 139 ( 1 ), 107 115 . 10.1061/(ASCE)GT.1943-5606.0000745 Search in Google Scholar

Kaniraj, S.R., & Havanagi, V.G. (2001). Behavior of cement-stabilized fiber-reinforced fly ash-soil mixtures. Journal of Geotechnical and Geoenvironmental Engineering, 127(7), 574–584. Kaniraj S.R. , & Havanagi V.G. ( 2001 ). Behavior of cement-stabilized fiber-reinforced fly ash-soil mixtures . Journal of Geotechnical and Geoenvironmental Engineering , 127 ( 7 ), 574 584 . 10.1061/(ASCE)1090-0241(2001)127:7(574) Search in Google Scholar

Tang, C.S., Shi, B., Gao, W., Chen, F., & Cai, Y. (2007). Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil. Geotextiles and Geomembranes, 25(3), 194–202. Tang C.S. Shi B. Gao W. Chen F. , & Cai Y. ( 2007 ). Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil . Geotextiles and Geomembranes , 25 ( 3 ), 194 202 . 10.1016/j.geotexmem.2006.11.002 Search in Google Scholar

Khattak, M.J., & AlRashidi, M. (2006). Durability and mechanistic characteristics of fiber reinforced soil–cement mixtures. International Journal of Pavement Engineering, 7(1), 53–62, http://dx.doi.org/10.1080/10298430500489207. Khattak M.J. , & AlRashidi M. ( 2006 ). Durability and mechanistic characteristics of fiber reinforced soil–cement mixtures . International Journal of Pavement Engineering , 7 ( 1 ), 53 62 , http://dx.doi.org/10.1080/10298430500489207 . 10.1080/10298430500489207 Search in Google Scholar

Consoli, N.C., Vendruscolo, M.A., Fonini, A., & Dalla Rosa, F. (2009). Fiber reinforcement effects on sand considering a wide cementation range. Geotextiles and Geomembranes, 27(3), 196–203, doi:10.1016/j.geotexmem.2008.11.005. Consoli N.C. Vendruscolo M.A. Fonini A. , & Dalla Rosa F. ( 2009 ). Fiber reinforcement effects on sand considering a wide cementation range . Geotextiles and Geomembranes , 27 ( 3 ), 196 203 , doi: 10.1016/j.geotexmem.2008.11.005 . Open DOISearch in Google Scholar

Chen, M., Shen, S.L., Arulrajah, A., Wu, H.N., Hou, D.W., & Xu, Y.S. (2015). Laboratory evaluation on the effectiveness of polypropylene fibers on the strength of fiber-reinforced and cement-stabilized Shanghai soft clay. Geotextiles and Geomembranes, 43(6), 515–523. Chen M. Shen S.L. Arulrajah A. Wu H.N. Hou D.W. , & Xu Y.S. ( 2015 ). Laboratory evaluation on the effectiveness of polypropylene fibers on the strength of fiber-reinforced and cement-stabilized Shanghai soft clay . Geotextiles and Geomembranes , 43 ( 6 ), 515 523 . 10.1016/j.geotexmem.2015.05.004 Search in Google Scholar

Hazirbaba, K. (2018). Large-scale direct shear and CBR performance of geofibre-reinforced sand. Road Materials and Pavement Design, 19(6), 1350–1371, https://doi.org/10.1080/14680629.2017.1310667. Hazirbaba K. ( 2018 ). Large-scale direct shear and CBR performance of geofibre-reinforced sand . Road Materials and Pavement Design , 19 ( 6 ), 1350 1371 , https://doi.org/10.1080/14680629.2017.1310667 . 10.1080/14680629.2017.1310667 Search in Google Scholar

Festugato, L., Menger, E., Benezra, F., Kipper, E.A., & Consoli, N.C. (2017). Fibre-reinforced cemented soils compressive and tensile strength assessment as a function of filament length. Geotextiles and Geomembranes, 45(1), 77–82. Festugato L. Menger E. Benezra F. Kipper E.A. , & Consoli N.C. ( 2017 ). Fibre-reinforced cemented soils compressive and tensile strength assessment as a function of filament length . Geotextiles and Geomembranes , 45 ( 1 ), 77 82 . 10.1016/j.geotexmem.2016.09.001 Search in Google Scholar

Divya, P. V., Viswanadham, B. V. S., & Gourc, J. P. (2018). Hydraulic conductivity behaviour of soil blended with geofiber inclusions. Geotextiles and Geomembranes, 46(2), 121–130. Divya P. V. Viswanadham B. V. S. , & Gourc J. P. ( 2018 ). Hydraulic conductivity behaviour of soil blended with geofiber inclusions . Geotextiles and Geomembranes , 46 ( 2 ), 121 130 . 10.1016/j.geotexmem.2017.10.008 Search in Google Scholar

Li, Y., Ling, X., Su, L., An, L., Li, P., & Zhao, Y. (2018). Tensile strength of fiber reinforced soil under freeze-thaw condition. Cold Regions Science and Technology, 146, 53–59. Li Y. Ling X. Su L. An L. Li P. , & Zhao Y. ( 2018 ). Tensile strength of fiber reinforced soil under freeze-thaw condition . Cold Regions Science and Technology , 146 , 53 59 . 10.1016/j.coldregions.2017.11.010 Search in Google Scholar

Lee, J., Kim, Y., & Jeong, S.S. (2010). Three-dimensional analysis of bearing behavior of piled raft on soft clay. Computers and Geotechnics, 37(1–2), 103–114, doi:10.1016/j.compgeo.2009.07.009. Lee J. Kim Y. , & Jeong S.S. ( 2010 ). Three-dimensional analysis of bearing behavior of piled raft on soft clay . Computers and Geotechnics , 37( 1 2 ), 103 114 , doi: 10.1016/j.compgeo.2009.07.009 . Open DOISearch in Google Scholar

Modarresi, M., Rasouli, H., Taghavi Ghalesari, A., & Baziar, M.H. (2016). Experimental and numerical study of pile-to-pile interaction factor in sandy soil. Procedia Engineering, 161, 1030–1036, https://doi.org/10.1016/j.proeng.2016.08.844. Modarresi M. Rasouli H. Taghavi Ghalesari A. , & Baziar M.H. ( 2016 ). Experimental and numerical study of pile-to-pile interaction factor in sandy soil . Procedia Engineering , 161 , 1030 1036 , https://doi.org/10.1016/j.proeng.2016.08.844 . 10.1016/j.proeng.2016.08.844 Search in Google Scholar

Taghavi Ghalesari, A., Barari, A., Fardad Amini, P., & Ibsen, L.B. (2015). Development of optimum design from static response of pile-raft interaction. Journal of Marine Science and Technology, 20(2), 331–343, doi 10.1007/s00773-014-0286-x. Taghavi Ghalesari A. Barari A. Fardad Amini P. , & Ibsen L.B. ( 2015 ). Development of optimum design from static response of pile-raft interaction . Journal of Marine Science and Technology , 20 ( 2 ), 331 343 , doi 10.1007/s00773-014-0286-x . Open DOISearch in Google Scholar

Taghavi Ghalesari, A., & Janalizadeh Choobbasti, A. (2018). Numerical analysis of settlement and bearing behaviour of piled raft in Babol clay. European Journal of Environmental and Civil Engineering, 22(8), 978–1003. https://doi.org/10.1080/19648189.2016.1229230. Taghavi Ghalesari A. , & Janalizadeh Choobbasti A. ( 2018 ). Numerical analysis of settlement and bearing behaviour of piled raft in Babol clay . European Journal of Environmental and Civil Engineering , 22 ( 8 ), 978 1003 . https://doi.org/10.1080/19648189.2016.1229230 . 10.1080/19648189.2016.1229230 Search in Google Scholar

van Impe, W.F. (2001). Methods of analysis of piled raft foundations. International Society of Soil Mechanics and Geotechnical Engineering, Technical Committee TC18 on Piled Foundations. van Impe W.F. ( 2001 ). Methods of analysis of piled raft foundations . International Society of Soil Mechanics and Geotechnical Engineering, Technical Committee TC18 on Piled Foundations . Search in Google Scholar

Poulos, H.G. (1994). An approximate numerical analysis of pile-raft interaction. International Journal for Numerical and Analytical Methods in Geomechanics, 18, 73-92. Poulos H.G. ( 1994 ). An approximate numerical analysis of pile-raft interaction . International Journal for Numerical and Analytical Methods in Geomechanics , 18 , 73 - 92 . 10.1002/nag.1610180202 Search in Google Scholar

Poulos, H.G. (1991). In Computer methods and advances in geomechanics (Eds. Beer et al.), pp. 183–191. Rotterdam: Balkema. Poulos H.G. ( 1991 ). In Computer methods and advances in geomechanics (Eds. Beer et al. ), pp. 183 191 . Rotterdam : Balkema . Search in Google Scholar

Horikoshi, K., & Randolph, M.F. (1998). A contribution to the optimum design of piled rafts. Geotechnique, 48(2), 301–317. Horikoshi K. , & Randolph M.F. ( 1998 ). A contribution to the optimum design of piled rafts . Geotechnique , 48 ( 2 ), 301 317 . 10.1680/geot.1998.48.3.301 Search in Google Scholar

Taghavi Ghalesari, A., Barari, A., Fardad Amini, P., & Ibsen, L.B. (2013). The settlement behavior of piled raft interaction in undrained soil. Proc. IACGE 2013, China: Challenges and Recent Advances in Geotechnical and Seismic Research and Practices, GSP 232 (ASCE), 605-612. Taghavi Ghalesari A. Barari A. Fardad Amini P. , & Ibsen L.B. ( 2013 ). The settlement behavior of piled raft interaction in undrained soil . Proc. IACGE 2013, China: Challenges and Recent Advances in Geotechnical and Seismic Research and Practices, GSP 232 (ASCE) , 605 - 612 . 10.1061/9780784413128.071 Search in Google Scholar

Prakoso, W.A., & Kulhawy, F.H. (2001). Contribution to piled raft foundation design. Journal of Geotechnical and Geoenvironmental Engineering, 127(1), 17–24. Prakoso W.A. , & Kulhawy F.H. ( 2001 ). Contribution to piled raft foundation design . Journal of Geotechnical and Geoenvironmental Engineering , 127 ( 1 ), 17 24 . 10.1061/(ASCE)1090-0241(2001)127:1(17) Search in Google Scholar

eISSN:
1899-0142
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Architektur und Design, Architektur, Architekten, Gebäude