Uneingeschränkter Zugang

Protein Glycosylation In Bacterial Cells And Its Potential Applications


Zitieren

Abouelhadid S., North S.J., Hitchen P., Vohra P., Chintoan--Uta C., Stevens M., Dell A., Cuccui J., Wren B.W.: Quantitative Analyses Reveal Novel Roles for N-Glycosylation in a Major Enteric Bacterial Pathogen. MBio, 10, (2019)AbouelhadidS.NorthS.J.HitchenP.VohraP.Chintoan--UtaC.StevensM.DellA.CuccuiJ.WrenB.W.Quantitative Analyses Reveal Novel Roles for N-Glycosylation in a Major Enteric Bacterial PathogenMBio10, 201910.1128/mBio.00297-19647899831015322Search in Google Scholar

Aebi M.: N-linked protein glycosylation in the ER. Biochim. Biophys. Acta, 1833, 2430–2437 (2013)AebiM.N-linked protein glycosylation in the ERBiochim. Biophys. Acta183324302437201310.1016/j.bbamcr.2013.04.00123583305Search in Google Scholar

Alaimo C., Catrein I., Morf L., Marolda C.L., Callewaert N., Valvano M.A., Feldman M.F., Aebi M.: Two distinct but interchangeable mechanisms for flipping of lipid-linked oligosaccharides. EMBO J., 25, 967–976 (2006)AlaimoC.CatreinI.MorfL.MaroldaC.L.CallewaertN.ValvanoM.A.FeldmanM.F.AebiM.Two distinct but interchangeable mechanisms for flipping of lipid-linked oligosaccharidesEMBO J.25967976200610.1038/sj.emboj.7601024140973116498400Search in Google Scholar

Anonsen J.H., Vik A., Borud B., Viburiene R., Aas F.E., Kidd S.W., Aspholm M., Koomey M.: Characterization of a Unique Tetrasaccharide and Distinct Glycoproteome in the O-Linked Protein Glycosylation System of Neisseria elongata subsp. glycolytica. J. Bacteriol. 198, 256–267 (2016)AnonsenJ.H.VikA.BorudB.ViburieneR.AasF.E.KiddS.W.AspholmM.KoomeyM.Characterization of a Unique Tetrasaccharide and Distinct Glycoproteome in the O-Linked Protein Glycosylation System of Neisseria elongata subsp. glycolyticaJ. Bacteriol.198256267201610.1128/JB.00620-15475180026483525Search in Google Scholar

Anonsen J.H., Vik A., Egge-Jacobsen W., Koomey M.: An extended spectrum of target proteins and modification sites in the general O-linked protein glycosylation system in Neisseria gonorrhoeae. J. Proteome Res. 11, 5781–5793 (2012)AnonsenJ.H.VikA.Egge-JacobsenW.KoomeyM.An extended spectrum of target proteins and modification sites in the general O-linked protein glycosylation system in Neisseria gonorrhoeaeJ. Proteome Res1157815793201210.1021/pr300584x23030644Search in Google Scholar

Arora S.K., Neely A.N., Blair B., Lory S., Ramphal R.: Role of motility and flagellin glycosylation in the pathogenesis of Pseudomonas aeruginosa burn wound infections. Infect. Immun. 73, 4395–4398 (2005)AroraS.K.NeelyA.N.BlairB.LoryS.RamphalR.Role of motility and flagellin glycosylation in the pathogenesis of Pseudomonas aeruginosa burn wound infectionsInfect. Immun.7343954398200510.1128/IAI.73.7.4395-4398.2005116855715972536Search in Google Scholar

Baraldo K., Mori E., Bartoloni A., Norelli F., Grandi G., Rappuoli R., Finco O., Del Giudice G.: Combined conjugate vaccines: enhanced immunogenicity with the N19 polyepitope as a carrier protein. Infect. Immun. 73, 5835–5841 (2005)BaraldoK.MoriE.BartoloniA.NorelliF.GrandiG.RappuoliR.FincoO.Del GiudiceG.Combined conjugate vaccines: enhanced immunogenicity with the N19 polyepitope as a carrier proteinInfect. Immun7358355841200510.1128/IAI.73.9.5835-5841.2005123110816113302Search in Google Scholar

Barel M., Charbit A.: Role of Glycosylation/Deglycolysation Processes in Francisella tularensis Pathogenesis. Front. Cell Infect. Microbiol. 7, 71 (2017)BarelM.CharbitA.Role of Glycosylation/Deglycolysation Processes in Francisella tularensis PathogenesisFront. Cell Infect. Microbiol771201710.3389/fcimb.2017.00071535931428377902Search in Google Scholar

Benz I., Schmidt M.A.: Glycosylation with heptose residues mediated by the aah gene product is essential for adherence of the AIDA-I adhesin. Mol. Microbiol. 40, 1403–1413 (2001)BenzI.SchmidtM.A.Glycosylation with heptose residues mediated by the aah gene product is essential for adherence of the AIDA-I adhesinMol. Microbiol4014031413200110.1046/j.1365-2958.2001.02487.x11442838Search in Google Scholar

Bhat A.H., Maity S., Giri K., Ambatipudi K.: Protein glycosylation: Sweet or bitter for bacterial pathogens? Crit. Rev. Microbiol. 45, 82–102 (2019)BhatA.H.MaityS.GiriK.AmbatipudiK.Protein glycosylation: Sweet or bitter for bacterial pathogens?Crit. Rev. Microbiol4582102201910.1080/1040841X.2018.154768130632429Search in Google Scholar

Borud B., Viburiene R., Hartley M.D., Paulsen B.S., Egge-Jacobsen W., Imperiali B., Koomey M.: Genetic and molecular analyses reveal an evolutionary trajectory for glycan synthesis in a bacterial protein glycosylation system. Proc. Natl. Acad. Sci. USA, 108, 9643–9648 (2011)BorudB.ViburieneR.HartleyM.D.PaulsenB.S.Egge-JacobsenW.ImperialiB.KoomeyM.Genetic and molecular analyses reveal an evolutionary trajectory for glycan synthesis in a bacterial protein glycosylation systemProc. Natl. Acad. Sci. USA10896439648201110.1073/pnas.1103321108311129421606362Search in Google Scholar

Broker M., Dull P.M., Rappuoli R., Costantino P.: Chemistry of a new investigational quadrivalent meningococcal conjugate vaccine that is immunogenic at all ages. Vaccine, 27, 5574–5580 (2009)BrokerM.DullP.M.RappuoliR.CostantinoP.Chemistry of a new investigational quadrivalent meningococcal conjugate vaccine that is immunogenic at all agesVaccine2755745580200910.1016/j.vaccine.2009.07.03619619500Search in Google Scholar

Cain J.A., Dale A.L., Niewold P., Klare W.P., Man L., White M.Y., Scott N.E., Cordwell S.J.: Proteomics Reveals Multiple Phenotypes Associated with N-linked Glycosylation in Campylobacter jejuni. Mol. Cell Proteomics. 18, 715–734 (2019)CainJ.A.DaleA.L.NiewoldP.KlareW.P.ManL.WhiteM.Y.ScottN.E.CordwellS.J.Proteomics Reveals Multiple Phenotypes Associated with N-linked Glycosylation in Campylobacter jejuniMol. Cell Proteomics18715734201910.1074/mcp.RA118.001199644236130617158Search in Google Scholar

Cain J.A., Dale A.L., Sumer-Bayraktar Z., Solis N., Cordwell S.J.: Identifying the targets and functions of N-linked protein glycosylation in Campylobacter jejuni. Mol. Omics. 16, 287–304 (2020)CainJ.A.DaleA.L.Sumer-BayraktarZ.SolisN.CordwellS.J.Identifying the targets and functions of N-linked protein glycosylation in Campylobacter jejuniMol. Omics16287304202010.1039/D0MO00032A32347268Search in Google Scholar

Chang I.J., He M., Lam C.T.: Congenital disorders of glycosylation. Ann. Transl. Med. 6, 477 (2018)ChangI.J.HeM.LamC.T.Congenital disorders of glycosylationAnn. Transl. Med6477201810.21037/atm.2018.10.45633136530740408Search in Google Scholar

Chludzinska A., Chrostek L., Cylwik B.: The alterations of proteins glycosylation in rheumatic diseases. Pol. Merkur. Lekarski, 33, 112–116 (2012)ChludzinskaA.ChrostekL.CylwikB.The alterations of proteins glycosylation in rheumatic diseasesPol. Merkur. Lekarski331121162012Search in Google Scholar

Chou W.K., Dick S., Wakarchuk W.W., Tanner M.E.: Identification and characterization of NeuB3 from Campylobacter jejuni as a pseudaminic acid synthase. J. Biol. Chem. 280, 35922–35928 (2005)ChouW.K.DickS.WakarchukW.W.TannerM.E.Identification and characterization of NeuB3 from Campylobacter jejuni as a pseudaminic acid synthaseJ. Biol. Chem2803592235928200510.1074/jbc.M50748320016120604Search in Google Scholar

Cook M.C., Kaldas S.J., Muradia G., Rosu-Myles M., Kunkel J.P.: Comparison of orthogonal chromatographic and lectin-affinity microarray methods for glycan profiling of a therapeutic monoclonal antibody. J. Chromatogr. B. Technol. Biomed. Life Sci. 997, 162–178 (2015)CookM.C.KaldasS.J.MuradiaG.Rosu-MylesM.KunkelJ.P.Comparison of orthogonal chromatographic and lectin-affinity microarray methods for glycan profiling of a therapeutic monoclonal antibodyJ. Chromatogr. B. Technol. Biomed. Life Sci997162178201510.1016/j.jchromb.2015.05.03526114652Search in Google Scholar

Corfield A.: Eukaryotic protein glycosylation: a primer for histochemists and cell biologists. Histochem. Cell Biol. 147, 119–147 (2017)CorfieldA.Eukaryotic protein glycosylation: a primer for histochemists and cell biologistsHistochem. Cell Biol147119147201710.1007/s00418-016-1526-4530619128012131Search in Google Scholar

Cortina M.E., Balzano R.E., Rey Serantes D.A., Caillava A.J., Elena S., Ferreira A.C., Nicola A.M., Ugalde J.E., Comerci D.J., Ciocchini A.E.: A bacterial glycoengineered antigen for improved serodiagnosis of porcine brucellosis. J. Clin. Microbiol. 54, 1448–1455 (2016)CortinaM.E.BalzanoR.E.Rey SerantesD.A.CaillavaA.J.ElenaS.FerreiraA.C.NicolaA.M.UgaldeJ.E.ComerciD.J.CiocchiniA.E.A bacterial glycoengineered antigen for improved serodiagnosis of porcine brucellosisJ. Clin. Microbiol5414481455201610.1128/JCM.00151-16487927226984975Search in Google Scholar

Cuccui J., Thomas R.M., Moule M.G., D’Elia R.V., Laws T.R., Mills D.C., Williamson D., Atkins T.P., Prior J.L., Wren B.W.: Exploitation of bacterial N-linked glycosylation to develop a novel recombinant glycoconjugate vaccine against Francisella tularensis. Open Biol. 3, 130002 (2013)CuccuiJ.ThomasR.M.MouleM.G.D’EliaR.V.LawsT.R.MillsD.C.WilliamsonD.AtkinsT.P.PriorJ.L.WrenB.W.Exploitation of bacterial N-linked glycosylation to develop a novel recombinant glycoconjugate vaccine against Francisella tularensisOpen Biol3130002201310.1098/rsob.130002386687523697804Search in Google Scholar

Cullen T.W., O’Brien J.P., Hendrixson D.R., Giles D.K., Hobb R.I., Thompson S.A., Brodbelt J.S., Trent M.S.: EptC of Campylobacter jejuni mediates phenotypes involved in host interactions and virulence. Infect. Immun. 81, 430–440 (2013)CullenT.W.O’BrienJ.P.HendrixsonD.R.GilesD.K.HobbR.I.ThompsonS.A.BrodbeltJ.S.TrentM.S.EptC of Campylobacter jejuni mediates phenotypes involved in host interactions and virulenceInfect. Immun81430440201310.1128/IAI.01046-12355381523184526Search in Google Scholar

Cummings R.D.: Stuck on sugars – how carbohydrates regulate cell adhesion, recognition, and signaling. Glycoconj. J. 36, 241–257 (2019)CummingsR.D.Stuck on sugars – how carbohydrates regulate cell adhesion, recognition, and signalingGlycoconj. J36241257201910.1007/s10719-019-09876-0665736131267247Search in Google Scholar

de Zoete M.R., Keestra A.M., Wagenaar J.A., van Putten J.P.: Reconstitution of a functional Toll-like receptor 5 binding site in Campylobacter jejuni flagellin. J. Biol. Chem. 285, 12149–12158 (2010)de ZoeteM.R.KeestraA.M.WagenaarJ.A.van PuttenJ.P.Reconstitution of a functional Toll-like receptor 5 binding site in Campylobacter jejuni flagellinJ. Biol. Chem2851214912158201010.1074/jbc.M109.070227285295420164175Search in Google Scholar

DiGiandomenico A., Matewish M.J., Bisaillon A., Stehle J.R., Lam J.S., Castric P.: Glycosylation of Pseudomonas aeruginosa 1244 pilin: glycan substrate specificity. Mol. Microbiol. 46, 519–530 (2002)DiGiandomenicoA.MatewishM.J.BisaillonA.StehleJ.R.LamJ.S.CastricP.Glycosylation of Pseudomonas aeruginosa 1244 pilin: glycan substrate specificityMol. Microbiol46519530200210.1046/j.1365-2958.2002.03171.x12406226Search in Google Scholar

Dubb R.K., Nothaft H., Beadle B., Richards M.R., Szymanski C.M.: N-glycosylation of the CmeABC multidrug efflux pump is needed for optimal function in Campylobacter jejuni. Glycobiology, 30, 105–119 (2020)DubbR.K.NothaftH.BeadleB.RichardsM.R.SzymanskiC.M.N-glycosylation of the CmeABC multidrug efflux pump is needed for optimal function in Campylobacter jejuniGlycobiology30105119202010.1093/glycob/cwz08231588498Search in Google Scholar

Eichler J., Koomey M.: Sweet New Roles for Protein Glycosylation in Prokaryotes. Trends Microbiol. 25, 662–672 (2017)EichlerJ.KoomeyM.Sweet New Roles for Protein Glycosylation in ProkaryotesTrends Microbiol25662672201710.1016/j.tim.2017.03.00128341406Search in Google Scholar

Elango D., Schulz B.L.: Phase-Variable Glycosylation in Nontypeable Haemophilus influenzae. J. Proteome Res. 19, 464–476 (2020)ElangoD.SchulzB.L.Phase-Variable Glycosylation in Nontypeable Haemophilus influenzaeJ. Proteome Res19464476202010.1021/acs.jproteome.9b0065731774288Search in Google Scholar

Ewing C.P., Andreishcheva E., Guerry P.: Functional characterization of flagellin glycosylation in Campylobacter jejuni 81–176. J. Bacteriol. 191, 7086–7093 (2009)EwingC.P.AndreishchevaE.GuerryP.Functional characterization of flagellin glycosylation in Campylobacter jejuni 81–176J. Bacteriol19170867093200910.1128/JB.00378-09277246919749047Search in Google Scholar

Feldman M.F., Wacker M., Hernandez M., Hitchen P.G., Marolda C.L., Kowarik M., Morris H.R., Dell A., Valvano M.A., Aebi M.: Engineering N-linked protein glycosylation with diverse O antigen lipopolysaccharide structures in Escherichia coli. Proc. Natl. Acad. Sci. U S A, 102, 3016–3021 (2005)FeldmanM.F.WackerM.HernandezM.HitchenP.G.MaroldaC.L.KowarikM.MorrisH.R.DellA.ValvanoM.A.AebiM.Engineering N-linked protein glycosylation with diverse O antigen lipopolysaccharide structures in Escherichia coliProc. Natl. Acad. Sci. U S A10230163021200510.1073/pnas.050004410254945015703289Search in Google Scholar

Freeze H.H.: Understanding human glycosylation disorders: biochemistry leads the charge. J. Biol. Chem. 288, 6936–6945 (2013)FreezeH.H.Understanding human glycosylation disorders: biochemistry leads the chargeJ. Biol. Chem28869366945201310.1074/jbc.R112.429274359160423329837Search in Google Scholar

Gabius H.J., Roth J.: An introduction to the sugar code. Histochem. Cell Biol. 147, 111–117 (2017)GabiusH.J.RothJ.An introduction to the sugar codeHistochem. Cell Biol147111117201710.1007/s00418-016-1521-927975142Search in Google Scholar

Garcia-Quintanilla F., Iwashkiw J.A., Price N.L., Stratilo C., Feldman M.F.: Production of a recombinant vaccine candidate against Burkholderia pseudomallei exploiting the bacterial N-glycosylation machinery. Front. Microbiol. 5, 381 (2014)Garcia-QuintanillaF.IwashkiwJ.A.PriceN.L.StratiloC.FeldmanM.F.Production of a recombinant vaccine candidate against Burkholderia pseudomallei exploiting the bacterial N-glycosylation machineryFront. Microbiol5381201410.3389/fmicb.2014.00381411419725120536Search in Google Scholar

Glover K.J., Weerapana E., Chen M.M., Imperiali B.: Direct biochemical evidence for the utilization of UDP-bacillosamine by PglC, an essential glycosyl-1-phosphate transferase in the Campylobacter jejuni N-linked glycosylation pathway. Biochemistry, 45, 5343–5350 (2006)GloverK.J.WeerapanaE.ChenM.M.ImperialiB.Direct biochemical evidence for the utilization of UDP-bacillosamine by PglC, an essential glycosyl-1-phosphate transferase in the Campylobacter jejuni N-linked glycosylation pathwayBiochemistry4553435350200610.1021/bi060205616618123Search in Google Scholar

Godzik A.: Metagenomics and the protein universe. Curr. Opin. Struct. Biol. 21, 398–403 (2011)GodzikA.Metagenomics and the protein universeCurr. Opin. Struct. Biol21398403201110.1016/j.sbi.2011.03.010311840421497084Search in Google Scholar

Goon S., Kelly J.F., Logan S.M., Ewing C.P., Guerry P.: Pseudaminic acid, the major modification on Campylobacter flagellin, is synthesized via the Cj1293 gene. Mol. Microbiol. 50, 659–671 (2003)GoonS.KellyJ.F.LoganS.M.EwingC.P.GuerryP.Pseudaminic acid, the major modification on Campylobacter flagellin, is synthesized via the Cj1293 geneMol. Microbiol50659671200310.1046/j.1365-2958.2003.03725.x14617187Search in Google Scholar

Grass S., Lichti C.F., Townsend R.R., Gross J., St Geme J.W., 3rd: The Haemophilus influenzae HMW1C protein is a glycosyltransferase that transfers hexose residues to asparagine sites in the HMW1 adhesin. PLoS Pathog. 6, e1000919 (2010)GrassS.LichtiC.F.TownsendR.R.GrossJ.St GemeJ.W.3rd: The Haemophilus influenzae HMW1C protein is a glycosyltransferase that transfers hexose residues to asparagine sites in the HMW1 adhesinPLoS Pathog6e1000919201010.1371/journal.ppat.1000919287774420523900Search in Google Scholar

Gross J., Grass S., Davis A.E., Gilmore-Erdmann P., Townsend R.R., St Geme J.W., 3rd: The Haemophilus influenzae HMW1 adhesin is a glycoprotein with an unusual N-linked carbohydrate modification. J. Biol. Chem. 283, 26010–26015 (2008)GrossJ.GrassS.DavisA.E.Gilmore-ErdmannP.TownsendR.R.St GemeJ.W.3rd: The Haemophilus influenzae HMW1 adhesin is a glycoprotein with an unusual N-linked carbohydrate modificationJ. Biol. Chem2832601026015200810.1074/jbc.M801819200325885718621734Search in Google Scholar

Gudelj I., Lauc G., Pezer M.: Immunoglobulin G glycosylation in aging and diseases. Cell Immunol. 333, 65–79 (2018)GudeljI.LaucG.PezerM.Immunoglobulin G glycosylation in aging and diseasesCell Immunol3336579201810.1016/j.cellimm.2018.07.00930107893Search in Google Scholar

Guerry P.: Campylobacter flagella: not just for motility. Trends Microbiol. 15, 456–461 (2007)GuerryP.Campylobacter flagella: not just for motilityTrends Microbiol15456461200710.1016/j.tim.2007.09.00617920274Search in Google Scholar

Guerry P., Ewing C.P., Schirm M., Lorenzo M., Kelly J., Pattarini D., Majam G., Thibault P., Logan S.: Changes in flagellin glycosylation affect Campylobacter autoagglutination and virulence. Mol. Microbiol. 60, 299–311 (2006)GuerryP.EwingC.P.SchirmM.LorenzoM.KellyJ.PattariniD.MajamG.ThibaultP.LoganS.Changes in flagellin glycosylation affect Campylobacter autoagglutination and virulenceMol. Microbiol60299311200610.1111/j.1365-2958.2006.05100.x142467416573682Search in Google Scholar

Harding C.M., Feldman M.F.: Glycoengineering bioconjugate vaccines, therapeutics, and diagnostics in E. coli. Glycobiology, 29, 519–529 (2019)HardingC.M.FeldmanM.F.Glycoengineering bioconjugate vaccines, therapeutics, and diagnostics in E. coliGlycobiology29519529201910.1093/glycob/cwz031Search in Google Scholar

Harvey H., Bondy-Denomy J., Marquis H., Sztanko K.M., Davidson A.R., Burrows L.L.: Pseudomonas aeruginosa defends against phages through type IV pilus glycosylation. Nat. Microbiol. 3, 47–52 (2018)HarveyH.Bondy-DenomyJ.MarquisH.SztankoK.M.DavidsonA.R.BurrowsL.L.Pseudomonas aeruginosa defends against phages through type IV pilus glycosylationNat. Microbiol34752201810.1038/s41564-017-0061-ySearch in Google Scholar

Helenius A., Aebi M.: Roles of N-linked glycans in the endoplasmic reticulum. Annu. Rev. Biochem. 73, 1019–1049 (2004)HeleniusA.AebiM.Roles of N-linked glycans in the endoplasmic reticulumAnnu. Rev. Biochem7310191049200410.1146/annurev.biochem.73.011303.073752Search in Google Scholar

Hendrixson D.R., DiRita V.J.: Identification of Campylobacter jejuni genes involved in commensal colonization of the chick gastrointestinal tract. Mol. Microbiol. 52, 471–484 (2004)HendrixsonD.R.DiRitaV.J.Identification of Campylobacter jejuni genes involved in commensal colonization of the chick gastrointestinal tractMol. Microbiol52471484200410.1111/j.1365-2958.2004.03988.xSearch in Google Scholar

Hopf P.S., Ford R.S., Zebian N., Merkx-Jacques A., Vijayakumar S., Ratnayake D., Hayworth J., Creuzenet C.: Protein glycosylation in Helicobacter pylori: beyond the flagellins? PLoS One, 6, e25722 (2011)HopfP.S.FordR.S.ZebianN.Merkx-JacquesA.VijayakumarS.RatnayakeD.HayworthJ.CreuzenetC.Protein glycosylation in Helicobacter pylori: beyond the flagellins?PLoS One6e25722201110.1371/journal.pone.0025722Search in Google Scholar

Howard S.L., Jagannathan A., Soo E.C., Hui J.P., Aubry A.J., Ahmed I., Karlyshev A., Kelly J.F., Jones M.A., Stevens M.P. i wsp.: Campylobacter jejuni glycosylation island important in cell charge, legionaminic acid biosynthesis, and colonization of chickens. Infect. Immun. 77, 2544–2556 (2009)HowardS.L.JagannathanA.SooE.C.HuiJ.P.AubryA.J.AhmedI.KarlyshevA.KellyJ.F.JonesM.A.StevensM.P.Campylobacter jejuni glycosylation island important in cell charge, legionaminic acid biosynthesis, and colonization of chickensInfect. Immun7725442556200910.1128/IAI.01425-08Search in Google Scholar

Huttner A., Hatz C., van den Dobbelsteen G., Abbanat D., Hornacek A., Frolich R., Dreyer A.M., Martin P., Davies T., Fae K. i wsp.: Safety, immunogenicity, and preliminary clinical efficacy of a vaccine against extraintestinal pathogenic Escherichia coli in women with a history of recurrent urinary tract infection: a randomised, single-blind, placebo-controlled phase 1b trial. Lancet Infect. Dis. 17, 528–537 (2017)HuttnerA.HatzC.van den DobbelsteenG.AbbanatD.HornacekA.FrolichR.DreyerA.M.MartinP.DaviesT.FaeK.Safety, immunogenicity, and preliminary clinical efficacy of a vaccine against extraintestinal pathogenic Escherichia coli in women with a history of recurrent urinary tract infection: a randomised, single-blind, placebo-controlled phase 1b trialLancet Infect. Dis17528537201710.1016/S1473-3099(17)30108-1Search in Google Scholar

Ihssen J., Kowarik M., Dilettoso S., Tanner C., Wacker M., Thony-Meyer L.: Production of glycoprotein vaccines in Escherichia coli. Microb. Cell Fact. 9, 61 (2010)IhssenJ.KowarikM.DilettosoS.TannerC.WackerM.Thony-MeyerL.Production of glycoprotein vaccines in Escherichia coliMicrob. Cell Fact961201010.1186/1475-2859-9-61292751020701771Search in Google Scholar

Iwashkiw J.A., Fentabil M.A., Faridmoayer A., Mills D.C., Peppler M., Czibener C., Ciocchini A.E., Comerci D.J., Ugalde J.E., Feldman M.F.: Exploiting the Campylobacter jejuni protein glycosylation system for glycoengineering vaccines and diagnostic tools directed against brucellosis. Microb. Cell Fact. 11, 13 (2012)IwashkiwJ.A.FentabilM.A.FaridmoayerA.MillsD.C.PepplerM.CzibenerC.CiocchiniA.E.ComerciD.J.UgaldeJ.E.FeldmanM.F.Exploiting the Campylobacter jejuni protein glycosylation system for glycoengineering vaccines and diagnostic tools directed against brucellosisMicrob. Cell Fact1113201210.1186/1475-2859-11-13329849122276812Search in Google Scholar

Iwashkiw J.A., Seper A., Weber B.S., Scott N.E., Vinogradov E., Stratilo C., Reiz B., Cordwell S.J., Whittal R., Schild S. i wsp.: Identification of a general O-linked protein glycosylation system in Acinetobacter baumannii and its role in virulence and biofilm formation. PLoS Pathog. 8, e1002758 (2012)IwashkiwJ.A.SeperA.WeberB.S.ScottN.E.VinogradovE.StratiloC.ReizB.CordwellS.J.WhittalR.SchildS.Identification of a general O-linked protein glycosylation system in Acinetobacter baumannii and its role in virulence and biofilm formationPLoS Pathog8e1002758201210.1371/journal.ppat.1002758336992822685409Search in Google Scholar

Jaffe S.R., Strutton B., Levarski Z., Pandhal J., Wright P.C.: Escherichia coli as a glycoprotein production host: recent developments and challenges. Curr. Opin. Biotechnol. 30, 205–210 (2014)JaffeS.R.StruttonB.LevarskiZ.PandhalJ.WrightP.C.Escherichia coli as a glycoprotein production host: recent developments and challengesCurr. Opin. Biotechnol30205210201410.1016/j.copbio.2014.07.006Search in Google Scholar

Jennings M.P., Jen F.E., Roddam L.F., Apicella M.A., Edwards J.L.: Neisseria gonorrhoeae pilin glycan contributes to CR3 activation during challenge of primary cervical epithelial cells. Cell Microbiol. 13, 885–896 (2011)JenningsM.P.JenF.E.RoddamL.F.ApicellaM.A.EdwardsJ.L.Neisseria gonorrhoeae pilin glycan contributes to CR3 activation during challenge of primary cervical epithelial cellsCell Microbiol13885896201110.1111/j.1462-5822.2011.01586.xSearch in Google Scholar

Jensen O.N.: Interpreting the protein language using proteomics. Nat. Rev. Mol. Cell Biol. 7, 391–403 (2006)JensenO.N.Interpreting the protein language using proteomicsNat. Rev. Mol. Cell Biol7391403200610.1038/nrm1939Search in Google Scholar

Jervis A.J., Butler J.A., Lawson A.J., Langdon R., Wren B.W., Linton D.: Characterization of the structurally diverse N-linked glycans of Campylobacter species. J. Bacteriol. 194, 2355–2362 (2012)JervisA.J.ButlerJ.A.LawsonA.J.LangdonR.WrenB.W.LintonD.Characterization of the structurally diverse N-linked glycans of Campylobacter speciesJ. Bacteriol19423552362201210.1128/JB.00042-12Search in Google Scholar

Jervis A.J., Wood A.G., Cain J.A., Butler J.A., Frost H., Lord E., Langdon R., Cordwell S.J., Wren B.W., Linton D.: Functional analysis of the Helicobacter pullorum N-linked protein glycosylation system. Glycobiology, 28, 233–244 (2018)JervisA.J.WoodA.G.CainJ.A.ButlerJ.A.FrostH.LordE.LangdonR.CordwellS.J.WrenB.W.LintonD.Functional analysis of the Helicobacter pullorum N-linked protein glycosylation systemGlycobiology28233244201810.1093/glycob/cwx110Search in Google Scholar

Kampf M.M., Braun M., Sirena D., Ihssen J., Thony-Meyer L., Ren Q.: In vivo production of a novel glycoconjugate vaccine against Shigella flexneri 2a in recombinant Escherichia coli: identification of stimulating factors for in vivo glycosylation. Microb. Cell Fact. 14, 12 (2015)KampfM.M.BraunM.SirenaD.IhssenJ.Thony-MeyerL.RenQ.In vivo production of a novel glycoconjugate vaccine against Shigella flexneri 2a in recombinant Escherichia coli: identification of stimulating factors for in vivo glycosylationMicrob. Cell Fact1412201510.1186/s12934-015-0195-7Search in Google Scholar

Karlyshev A.V., Everest P., Linton D., Cawthraw S., Newell D.G., Wren B.W.: The Campylobacter jejuni general glycosylation system is important for attachment to human epithelial cells and in the colonization of chicks. Microbiology, 150, 1957–1964 (2004)KarlyshevA.V.EverestP.LintonD.CawthrawS.NewellD.G.WrenB.W.The Campylobacter jejuni general glycosylation system is important for attachment to human epithelial cells and in the colonization of chicksMicrobiology15019571964200410.1099/mic.0.26721-0Search in Google Scholar

Karlyshev A.V., Linton D., Gregson N.A., Wren B.W.: A novel paralogous gene family involved in phase-variable flagella--mediated motility in Campylobacter jejuni. Microbiology, 148, 473–480 (2002)KarlyshevA.V.LintonD.GregsonN.A.WrenB.W.A novel paralogous gene family involved in phase-variable flagella--mediated motility in Campylobacter jejuniMicrobiology148473480200210.1099/00221287-148-2-473Search in Google Scholar

Kelleher D.J., Karaoglu D., Mandon E.C., Gilmore R.: Oligosaccharyltransferase isoforms that contain different catalytic STT3 subunits have distinct enzymatic properties. Mol. Cell. 12, 101–111 (2003)KelleherD.J.KaraogluD.MandonE.C.GilmoreR.Oligosaccharyltransferase isoforms that contain different catalytic STT3 subunits have distinct enzymatic propertiesMol. Cell12101111200310.1016/S1097-2765(03)00243-0Search in Google Scholar

Kelly J., Jarrell H., Millar L., Tessier L., Fiori L.M., Lau P.C., Allan B., Szymanski C.M.: Biosynthesis of the N-linked glycan in Campylobacter jejuni and addition onto protein through block transfer. J. Bacteriol. 188, 2427–2434 (2006)KellyJ.JarrellH.MillarL.TessierL.FioriL.M.LauP.C.AllanB.SzymanskiC.M.Biosynthesis of the N-linked glycan in Campylobacter jejuni and addition onto protein through block transferJ. Bacteriol18824272434200610.1128/JB.188.7.2427-2434.2006142841816547029Search in Google Scholar

Kowarik M., Numao S., Feldman M.F., Schulz B.L., Callewaert N., Kiermaier E., Catrein I., Aebi M.: N-linked glycosylation of folded proteins by the bacterial oligosaccharyltransferase. Science, 314, 1148–1150 (2006)KowarikM.NumaoS.FeldmanM.F.SchulzB.L.CallewaertN.KiermaierE.CatreinI.AebiM.N-linked glycosylation of folded proteins by the bacterial oligosaccharyltransferaseScience31411481150200610.1126/science.1134351Search in Google Scholar

Kowarik M., Young N.M., Numao S., Schulz B.L., Hug I., Callewaert N., Mills D.C., Watson D.C., Hernandez M., Kelly J.F. i wsp.: Definition of the bacterial N-glycosylation site consensus sequence. EMBO J. 25, 1957–1966 (2006)KowarikM.YoungN.M.NumaoS.SchulzB.L.HugI.CallewaertN.MillsD.C.WatsonD.C.HernandezM.KellyJ.F.Definition of the bacterial N-glycosylation site consensus sequenceEMBO J2519571966200610.1038/sj.emboj.7601087Search in Google Scholar

Ku S.C., Schulz B.L., Power P.M., Jennings M.P.: The pilin O-glycosylation pathway of pathogenic Neisseria is a general system that glycosylates AniA, an outer membrane nitrite reductase. Biochem. Biophys. Res. Commun. 378, 84–89 (2009)KuS.C.SchulzB.L.PowerP.M.JenningsM.P.The pilin O-glycosylation pathway of pathogenic Neisseria is a general system that glycosylates AniA, an outer membrane nitrite reductaseBiochem. Biophys. Res. Commun3788489200910.1016/j.bbrc.2008.11.025Search in Google Scholar

Lalonde M.E., Durocher Y.: Therapeutic glycoprotein production in mammalian cells. J. Biotechnol. 251, 128–140 (2017)LalondeM.E.DurocherY.Therapeutic glycoprotein production in mammalian cellsJ. Biotechnol251128140201710.1016/j.jbiotec.2017.04.028Search in Google Scholar

Larsen J.C., Szymanski C., Guerry P.: N-linked protein glycosylation is required for full competence in Campylobacter jejuni 81–176. J. Bacteriol. 186, 6508–6514 (2004)LarsenJ.C.SzymanskiC.GuerryP.N-linked protein glycosylation is required for full competence in Campylobacter jejuni 81–176J. Bacteriol18665086514200410.1128/JB.186.19.6508-6514.2004Search in Google Scholar

Lertsethtakarn P., Ottemann K.M., Hendrixson D.R.: Motility and chemotaxis in Campylobacter and Helicobacter. Annu. Rev. Microbiol. 65, 389–410 (2011)LertsethtakarnP.OttemannK.M.HendrixsonD.R.Motility and chemotaxis in Campylobacter and HelicobacterAnnu. Rev. Microbiol65389410201110.1146/annurev-micro-090110-102908Search in Google Scholar

Lesinski G.B., Westerink M.A.: Novel vaccine strategies to T-independent antigens. J. Microbiol. Methods. 47, 135–149 (2001)LesinskiG.B.WesterinkM.A.Novel vaccine strategies to T-independent antigensJ. Microbiol. Methods47135149200110.1016/S0167-7012(01)00290-1Search in Google Scholar

Lithgow K.V., Scott N.E., Iwashkiw J.A., Thomson E.L., Foster L.J., Feldman M.F., Dennis J.J.: A general protein O-glycosylation system within the Burkholderia cepacia complex is involved in motility and virulence. Mol. Microbiol. 92, 116–137 (2014)LithgowK.V.ScottN.E.IwashkiwJ.A.ThomsonE.L.FosterL.J.FeldmanM.F.DennisJ.J.A general protein O-glycosylation system within the Burkholderia cepacia complex is involved in motility and virulenceMol. Microbiol92116137201410.1111/mmi.1254024673753Search in Google Scholar

Lizak C., Gerber S., Numao S., Aebi M., Locher K.P.: X-ray structure of a bacterial oligosaccharyltransferase. Nature, 474, 350–355 (2011)LizakC.GerberS.NumaoS.AebiM.LocherK.P.X-ray structure of a bacterial oligosaccharyltransferaseNature474350355201110.1038/nature1015121677752Search in Google Scholar

Logan S.M.: Flagellar glycosylation – a new component of the motility repertoire? Microbiology, 152, 1249–1262 (2006)LoganS.M.Flagellar glycosylation – a new component of the motility repertoire?Microbiology15212491262200610.1099/mic.0.28735-016622043Search in Google Scholar

Lombard V., Golaconda Ramulu H., Drula E., Coutinho P.M., Henrissat B.: The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic. Acids Res. 42, D490–495 (2014)LombardV.Golaconda RamuluH.DrulaE.CoutinhoP.M.HenrissatB.The carbohydrate-active enzymes database (CAZy) in 2013Nucleic. Acids Res42D490495201410.1093/nar/gkt1178Search in Google Scholar

Lu Q., Li S., Shao F.: Sweet Talk: Protein Glycosylation in Bacterial Interaction With the Host. Trends Microbiol. 23, 630–641 (2015)LuQ.LiS.ShaoF.Sweet Talk: Protein Glycosylation in Bacterial Interaction With the HostTrends Microbiol23630641201510.1016/j.tim.2015.07.003Search in Google Scholar

Mahdavi J., Pirinccioglu N., Oldfield N.J., Carlsohn E., Stoof J., Aslam A., Self T., Cawthraw S.A., Petrovska L., Colborne N. i wsp.: A novel O-linked glycan modulates Campylobacter jejuni major outer membrane protein-mediated adhesion to human histo-blood group antigens and chicken colonization. Open Biol. 4, 130202 (2014)MahdaviJ.PirincciogluN.OldfieldN.J.CarlsohnE.StoofJ.AslamA.SelfT.CawthrawS.A.PetrovskaL.ColborneN.A novel O-linked glycan modulates Campylobacter jejuni major outer membrane protein-mediated adhesion to human histo-blood group antigens and chicken colonizationOpen Biol4130202201410.1098/rsob.130202Search in Google Scholar

Makela P.H., Kayhty H., Leino T., Auranen K., Peltola H., Ekstrom N., Eskola J.: Long-term persistence of immunity after immunisation with Haemophilus influenzae type b conjugate vaccine. Vaccine, 22, 287–292 (2003)MakelaP.H.KayhtyH.LeinoT.AuranenK.PeltolaH.EkstromN.EskolaJ.Long-term persistence of immunity after immunisation with Haemophilus influenzae type b conjugate vaccineVaccine22287292200310.1016/S0264-410X(03)00524-3Search in Google Scholar

Mandlik A., Swierczynski A., Das A., Ton-That H.: Pili in Gram--positive bacteria: assembly, involvement in colonization and bioilm development. Trends Microbiol. 16, 33–40 (2008)MandlikA.SwierczynskiA.DasA.Ton-ThatH.Pili in Gram--positive bacteria: assembly, involvement in colonization and bioilm developmentTrends Microbiol163340200810.1016/j.tim.2007.10.010284169118083568Search in Google Scholar

McNally D.J., Hui J.P., Aubry A.J., Mui K., Guerry P., Brisson J.R., Logan S.M., Soo E.C.: Functional characterization of the flagellar glycosylation locus in Campylobacter jejuni 81–176 using a focused metabolomics approach. J. Biol. Chem. 281, 18489–18498 (2006)McNallyD.J.HuiJ.P.AubryA.J.MuiK.GuerryP.BrissonJ.R.LoganS.M.SooE.C.Functional characterization of the flagellar glycosylation locus in Campylobacter jejuni 81–176 using a focused metabolomics approachJ. Biol. Chem2811848918498200610.1074/jbc.M60377720016684771Search in Google Scholar

Melli L.J., Ciocchini A.E., Caillava A.J., Vozza N., Chinen I., Rivas M., Feldman M.F., Ugalde J.E., Comerci D.J.: Serogroup--specific bacterial engineered glycoproteins as novel antigenic targets for diagnosis of shiga toxin-producing-Escherichia coli-associated hemolytic-uremic syndrome. J. Clin. Microbiol. 53, 528–538 (2015)MelliL.J.CiocchiniA.E.CaillavaA.J.VozzaN.ChinenI.RivasM.FeldmanM.F.UgaldeJ.E.ComerciD.J.Serogroup--specific bacterial engineered glycoproteins as novel antigenic targets for diagnosis of shiga toxin-producing-Escherichia coli-associated hemolytic-uremic syndromeJ. Clin. Microbiol53528538201510.1128/JCM.02262-14429855325472487Search in Google Scholar

Nagar R., Rao A.: An iterative glycosyltransferase EntS catalyzes transfer and extension of O- and S-linked monosaccharide in enterocin 96. Glycobiology, 27, 766–776 (2017)NagarR.RaoA.An iterative glycosyltransferase EntS catalyzes transfer and extension of O- and S-linked monosaccharide in enterocin 96Glycobiology27766776201710.1093/glycob/cwx042588168428498962Search in Google Scholar

Nothaft H., Davis B., Lock Y.Y., Perez-Munoz M.E., Vinogradov E., Walter J., Coros C., Szymanski C.M.: Engineering the Campylobacter jejuni N-glycan to create an effective chicken vaccine. Sci. Rep. 6, 26511 (2016)NothaftH.DavisB.LockY.Y.Perez-MunozM.E.VinogradovE.WalterJ.CorosC.SzymanskiC.M.Engineering the Campylobacter jejuni N-glycan to create an effective chicken vaccineSci. Rep626511201610.1038/srep26511487952127221144Search in Google Scholar

Nothaft H., Liu X., McNally D.J., Szymanski C.M.: N-linked protein glycosylation in a bacterial system. Methods Mol. Biol. 600, 227–243 (2010)NothaftH.LiuX.McNallyD.J.SzymanskiC.M.N-linked protein glycosylation in a bacterial systemMethods Mol. Biol600227243201010.1007/978-1-60761-454-8_1619882132Search in Google Scholar

Nothaft H., Scott N.E., Vinogradov E., Liu X., Hu R., Beadle B., Fodor C., Miller W.G., Li J., Cordwell S.J. i wsp.: Diversity in the protein N-glycosylation pathways within the Campylobacter genus. Mol. Cell Proteomics. 11, 1203–1219 (2012)NothaftH.ScottN.E.VinogradovE.LiuX.HuR.BeadleB.FodorC.MillerW.G.LiJ.CordwellS.J.Diversity in the protein N-glycosylation pathways within the Campylobacter genusMol. Cell Proteomics1112031219201210.1074/mcp.M112.021519349419022859570Search in Google Scholar

Nothaft H., Szymanski C.M.: Protein glycosylation in bacteria: sweeter than ever. Nat. Rev. Microbiol. 8, 765–778 (2010)NothaftH.SzymanskiC.M.Protein glycosylation in bacteria: sweeter than everNat. Rev. Microbiol8765778201010.1038/nrmicro238320948550Search in Google Scholar

Ollis A.A., Zhang S., Fisher A.C., DeLisa M.P.: Engineered oligosaccharyltransferases with greatly relaxed acceptor-site specificity. Nat. Chem. Biol. 10, 816–822 (2014)OllisA.A.ZhangS.FisherA.C.DeLisaM.P.Engineered oligosaccharyltransferases with greatly relaxed acceptor-site specificityNat. Chem. Biol10816822201410.1038/nchembio.1609457549925129029Search in Google Scholar

Oman T.J., Boettcher J.M., Wang H., Okalibe X.N., van der Donk W.A.: Sublancin is not a lantibiotic but an S-linked glycopeptide. Nat. Chem. Biol. 7, 78–80 (2011)OmanT.J.BoettcherJ.M.WangH.OkalibeX.N.van der DonkW.A.Sublancin is not a lantibiotic but an S-linked glycopeptideNat. Chem. Biol77880201110.1038/nchembio.509306066121196935Search in Google Scholar

Pappas G., Akritidis N., Bosilkovski M., Tsianos E.: Brucellosis. N. Engl. J. Med. 352, 2325–2336 (2005)PappasG.AkritidisN.BosilkovskiM.TsianosE.BrucellosisN. Engl. J. Med35223252336200510.1016/B978-1-4160-4390-4.00070-9Search in Google Scholar

Parkhill J., Wren B.W., Mungall K., Ketley J.M., Churcher C., Basham D., Chillingworth T., Davies R.M., Feltwell T., Holroyd S. i wsp.: The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature, 403, 665–668 (2000)ParkhillJ.WrenB.W.MungallK.KetleyJ.M.ChurcherC.BashamD.ChillingworthT.DaviesR.M.FeltwellT.HolroydS.The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequencesNature403665668200010.1038/3500108810688204Search in Google Scholar

Perez C., Kohler M., Janser D., Pardon E., Steyaert J., Zenobi R., Locher K.P.: Structural basis of inhibition of lipid-linked oligosaccharide flippase PglK by a conformational nanobody. Sci. Rep. 7, 46641 (2017)PerezC.KohlerM.JanserD.PardonE.SteyaertJ.ZenobiR.LocherK.P.Structural basis of inhibition of lipid-linked oligosaccharide flippase PglK by a conformational nanobodySci. Rep746641201710.1038/srep46641539594428422165Search in Google Scholar

Pinho S.S., Reis C.A.: Glycosylation in cancer: mechanisms and clinical implications. Nat. Rev. Cancer. 15, 540–555 (2015)PinhoS.S.ReisC.A.Glycosylation in cancer: mechanisms and clinical implicationsNat. Rev. Cancer15540555201510.1038/nrc398226289314Search in Google Scholar

Power P.M., Seib K.L., Jennings M.P.: Pilin glycosylation in Neisseria meningitidis occurs by a similar pathway to wzy-dependent O-antigen biosynthesis in Escherichia coli. Biochem. Biophys. Res. Commun. 347, 904–908 (2006)PowerP.M.SeibK.L.JenningsM.P.Pilin glycosylation in Neisseria meningitidis occurs by a similar pathway to wzy-dependent O-antigen biosynthesis in Escherichia coliBiochem. Biophys. Res. Commun347904908200610.1016/j.bbrc.2006.06.18216870136Search in Google Scholar

Ravenscroft N., Haeuptle M.A., Kowarik M., Fernandez F.S., Carranza P., Brunner A., Steffen M., Wetter M., Keller S., Ruch C. i wsp.: Purification and characterization of a Shigella conjugate vaccine, produced by glycoengineering Escherichia coli. Glycobiology, 26, 51–62 (2016)RavenscroftN.HaeuptleM.A.KowarikM.FernandezF.S.CarranzaP.BrunnerA.SteffenM.WetterM.KellerS.RuchC.Purification and characterization of a Shigella conjugate vaccine, produced by glycoengineeringEscherichia coli. Glycobiology2651622016Search in Google Scholar

Riddle M.S., Kaminski R.W., Di Paolo C., Porter C.K., Gutierrez R.L., Clarkson K.A., Weerts H.E., Duplessis C., Castellano A., Alaimo C. i wsp. : Safety and immunogenicity of a candidate bioconjugate vaccine against Shigella flexneri 2a administered to healthy adults: a single-blind, randomized phase I study. Clin. Vaccine Immunol. 23, 908–917 (2016)RiddleM.S.KaminskiR.W.Di PaoloC.PorterC.K.GutierrezR.L.ClarksonK.A.WeertsH.E.DuplessisC.CastellanoA.AlaimoC.Safety and immunogenicity of a candidate bioconjugate vaccine against Shigella flexneri 2a administered to healthy adults: a single-blind, randomized phase I studyClin. Vaccine Immunol23908917201610.1128/CVI.00224-16513960127581434Search in Google Scholar

Salah Ud-Din A.I.M., Roujeinikova A.: Flagellin glycosylation with pseudaminic acid in Campylobacter and Helicobacter: prospects for development of novel therapeutics. Cell. Mol. Life Sci. 75, 1163–1178 (2018)Salah Ud-DinA.I.M.RoujeinikovaA.Flagellin glycosylation with pseudaminic acid in Campylobacter and Helicobacter: prospects for development of novel therapeuticsCell. Mol. Life Sci7511631178201810.1007/s00018-017-2696-529080090Search in Google Scholar

Schoenhofen I.C., Vinogradov E., Whitfield D.M., Brisson J.R., Logan S.M.: The CMP-legionaminic acid pathway in Campylobacter: biosynthesis involving novel GDP-linked precursors. Glycobiology, 19, 715–725 (2009)SchoenhofenI.C.VinogradovE.WhitfieldD.M.BrissonJ.R.LoganS.M.The CMP-legionaminic acid pathway in Campylobacter: biosynthesis involving novel GDP-linked precursorsGlycobiology19715725200910.1093/glycob/cwp03919282391Search in Google Scholar

Schwarz F., Fan Y.Y., Schubert M., Aebi M.: Cytoplasmic N-glycosyltransferase of Actinobacillus pleuropneumoniae is an inverting enzyme and recognizes the NX(S/T) consensus sequence. J. Biol. Chem. 286, 35267–35274 (2011)SchwarzF.FanY.Y.SchubertM.AebiM.Cytoplasmic N-glycosyltransferase of Actinobacillus pleuropneumoniae is an inverting enzyme and recognizes the NX(S/T) consensus sequenceJ. Biol. Chem2863526735274201110.1074/jbc.M111.277160318638721852240Search in Google Scholar

Scott N.E., Nothaft H., Edwards A.V., Labbate M., Djordjevic S.P., Larsen M.R., Szymanski C.M., Cordwell))) S.J.: Modification of the Campylobacter jejuni N-linked glycan by EptC protein-mediated addition of phosphoethanolamine. J. Biol. Chem. 287, 29384–29396 (2012)ScottN.E.NothaftH.EdwardsA.V.LabbateM.DjordjevicS.P.LarsenM.R.SzymanskiC.M.CordwellS.J.Modification of the Campylobacter jejuni N-linked glycan by EptC protein-mediated addition of phosphoethanolamineJ. Biol. Chem2872938429396201210.1074/jbc.M112.380212343615922761430Search in Google Scholar

Shcherbakova A., Tiemann B., Buettner F.F., Bakker H.: Distinct C-mannosylation of netrin receptor thrombospondin type 1 repeats by mammalian DPY19L1 and DPY19L3. Proc. Natl. Acad. Sci. USA, 114, 2574–2579 (2017)ShcherbakovaA.TiemannB.BuettnerF.F.BakkerH.Distinct C-mannosylation of netrin receptor thrombospondin type 1 repeats by mammalian DPY19L1 and DPY19L3Proc. Natl. Acad. Sci. USA11425742579201710.1073/pnas.1613165114534760328202721Search in Google Scholar

Shen A., Kamp H.D., Grundling A., Higgins D.E.: A bifunctional O-GlcNAc transferase governs flagellar motility through anti-repression. Genes Dev, 20, 3283–3295 (2006)ShenA.KampH.D.GrundlingA.HigginsD.E.A bifunctional O-GlcNAc transferase governs flagellar motility through anti-repressionGenes Dev2032833295200610.1101/gad.1492606168660517158746Search in Google Scholar

Spiro R.G.: Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology, 12, 43R–56R (2002)SpiroR.G.Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bondsGlycobiology1243R56R200210.1093/glycob/12.4.43RSearch in Google Scholar

Stephenson H.N., Mills D.C., Jones H., Milioris E., Copland A., Dorrell N., Wren B.W., Crocker P.R., Escors D., Bajaj-Elliott M.: Pseudaminic acid on Campylobacter jejuni flagella modulates dendritic cell IL-10 expression via Siglec-10 receptor: a novel flagellin-host interaction. J. Infect. Dis. 210, 1487–1498 (2014)StephensonH.N.MillsD.C.JonesH.MiliorisE.CoplandA.DorrellN.WrenB.W.CrockerP.R.EscorsD.Bajaj-ElliottM.Pseudaminic acid on Campylobacter jejuni flagella modulates dendritic cell IL-10 expression via Siglec-10 receptor: a novel flagellin-host interactionJ. Infect. Dis21014871498201410.1093/infdis/jiu287419544024823621Search in Google Scholar

Szymanski C.M., Yao R., Ewing C.P., Trust T.J., Guerry P.: Evidence for a system of general protein glycosylation in Campylobacter jejuni. Mol. Microbiol. 32, 1022–1030 (1999)SzymanskiC.M.YaoR.EwingC.P.TrustT.J.GuerryP.Evidence for a system of general protein glycosylation in Campylobacter jejuniMol. Microbiol3210221030199910.1046/j.1365-2958.1999.01415.x10361304Search in Google Scholar

Terra V.S., Mills D.C., Yates L.E., Abouelhadid S., Cuccui J., Wren B.W.: Recent developments in bacterial protein glycan coupling technology and glycoconjugate vaccine design. J. Med. Microbiol. 61, 919–926 (2012)TerraV.S.MillsD.C.YatesL.E.AbouelhadidS.CuccuiJ.WrenB.W.Recent developments in bacterial protein glycan coupling technology and glycoconjugate vaccine designJ. Med. Microbiol61919926201210.1099/jmm.0.039438-022516134Search in Google Scholar

Thibault P., Logan S.M., Kelly J.F., Brisson J.R., Ewing C.P., Trust T.J., Guerry P.: Identification of the carbohydrate moieties and glycosylation motifs in Campylobacter jejuni flagellin. J. Biol. Chem. 276, 34862–34870 (2001)ThibaultP.LoganS.M.KellyJ.F.BrissonJ.R.EwingC.P.TrustT.J.GuerryP.Identification of the carbohydrate moieties and glycosylation motifs in Campylobacter jejuni flagellinJ. Biol. Chem2763486234870200110.1074/jbc.M10452920011461915Search in Google Scholar

Twine S.M., Paul C.J., Vinogradov E., McNally D.J., Brisson J.R., Mullen J.A., McMullin D.R., Jarrell H.C., Austin J.W., Kelly J.F. i wsp.: Flagellar glycosylation in Clostridium botulinum. FEBS J. 275, 4428–4444 (2008)TwineS.M.PaulC.J.VinogradovE.McNallyD.J.BrissonJ.R.MullenJ.A.McMullinD.R.JarrellH.C.AustinJ.W.KellyJ.F.Flagellar glycosylation in Clostridium botulinumFEBS J.27544284444200810.1111/j.1742-4658.2008.06589.x18671733Search in Google Scholar

Tytgat H.L., Lebeer S.: The sweet tooth of bacteria: common themes in bacterial glycoconjugates. Microbiol. Mol. Biol. Rev. 78, 372–417 (2014)TytgatH.L.LebeerS.The sweet tooth of bacteria: common themes in bacterial glycoconjugatesMicrobiol. Mol. Biol. Rev78372417201410.1128/MMBR.00007-14418768725184559Search in Google Scholar

van Alphen L.B., Wuhrer M., Bleumink-Pluym N.M.C., Hensbergen P.J., Deelder A.M., van Putten J.P.M.: A functional Campylobacter jejuni maf4 gene results in novel glycoforms on flagellin and altered autoagglutination behaviour. Microbiology, 154, 3385–3397 (2008)van AlphenL.B.WuhrerM.Bleumink-PluymN.M.C.HensbergenP.J.DeelderA.M.van PuttenJ.P.M.A functional Campylobacter jejuni maf4 gene results in novel glycoforms on flagellin and altered autoagglutination behaviourMicrobiology15433853397200810.1099/mic.0.2008/019919-018957592Search in Google Scholar

van Sorge N.M., Bleumink N.M., van Vliet S.J., Saeland E., van der Pol W.L., van Kooyk Y., van Putten J.P.: N-glycosylated proteins and distinct lipooligosaccharide glycoforms of Campylobacter jejuni target the human C-type lectin receptor MGL. Cell Microbiol. 11, 1768–1781 (2009)van SorgeN.M.BleuminkN.M.van VlietS.J.SaelandE.van der PolW.L.van KooykY.van PuttenJ.P.N-glycosylated proteins and distinct lipooligosaccharide glycoforms of Campylobacter jejuni target the human C-type lectin receptor MGLCell Microbiol1117681781200910.1111/j.1462-5822.2009.01370.x19681908Search in Google Scholar

Venugopal H., Edwards P.J., Schwalbe M., Claridge J.K., Libich D.S., Stepper J., Loo T., Patchett M.L., Norris G.E., Pascal S.M.: Structural, dynamic, and chemical characterization of a novel S-glycosylated bacteriocin. Biochemistry, 50, 2748–2755 (2011)VenugopalH.EdwardsP.J.SchwalbeM.ClaridgeJ.K.LibichD.S.StepperJ.LooT.PatchettM.L.NorrisG.E.PascalS.M.Structural, dynamic, and chemical characterization of a novel S-glycosylated bacteriocinBiochemistry5027482755201110.1021/bi200217u21395300Search in Google Scholar

Verma A., Arora S.K., Kuravi S.K., Ramphal R.: Roles of specific amino acids in the N terminus of Pseudomonas aeruginosa flagellin and of flagellin glycosylation in the innate immune response. Infect. Immun. 73, 8237–8246 (2005)VermaA.AroraS.K.KuraviS.K.RamphalR.Roles of specific amino acids in the N terminus of Pseudomonas aeruginosa flagellin and of flagellin glycosylation in the innate immune responseInfect. Immun7382378246200510.1128/IAI.73.12.8237-8246.2005130702016299320Search in Google Scholar

Vik A., Aas F.E., Anonsen J.H., Bilsborough S., Schneider A., Egge-Jacobsen W., Koomey M.: Broad spectrum O-linked protein glycosylation in the human pathogen Neisseria gonorrhoeae. Proc. Natl. Acad. Sci. USA, 106, 4447–4452 (2009)VikA.AasF.E.AnonsenJ.H.BilsboroughS.SchneiderA.Egge-JacobsenW.KoomeyM.Broad spectrum O-linked protein glycosylation in the human pathogen Neisseria gonorrhoeaeProc. Natl. Acad. Sci. USA10644474452200910.1073/pnas.0809504106264889219251655Search in Google Scholar

Wacker M., Feldman M.F., Callewaert N., Kowarik M., Clarke B.R., Pohl N.L., Hernandez M., Vines E.D., Valvano M.A., Whitfield C. i wsp.: Substrate specificity of bacterial oligosaccharyltransferase suggests a common transfer mechanism for the bacterial and eukaryotic systems. Proc. Natl. Acad. Sci. USA, 103, 7088–7093 (2006)WackerM.FeldmanM.F.CallewaertN.KowarikM.ClarkeB.R.PohlN.L.HernandezM.VinesE.D.ValvanoM.A.WhitfieldC.Substrate specificity of bacterial oligosaccharyltransferase suggests a common transfer mechanism for the bacterial and eukaryotic systemsProc. Natl. Acad. Sci. USA10370887093200610.1073/pnas.0509207103145902216641107Search in Google Scholar

Wacker M., Linton D., Hitchen P.G., Nita-Lazar M., Haslam S.M., North S.J., Panico M., Morris H.R., Dell A., Wren B.W. i wsp.: N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science, 298, 1790–1793 (2002)WackerM.LintonD.HitchenP.G.Nita-LazarM.HaslamS.M.NorthS.J.PanicoM.MorrisH.R.DellA.WrenB.W.N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coliScience29817901793200210.1126/science.298.5599.179012459590Search in Google Scholar

Wacker M., Wang L., Kowarik M., Dowd M., Lipowsky G., Faridmoayer A., Shields K., Park S., Alaimo C., Kelley K.A. i wsp.: Prevention of Staphylococcus aureus infections by glycoprotein vaccines synthesized in Escherichia coli. J. Infect. Dis., 209, 1551–1561 (2014)WackerM.WangL.KowarikM.DowdM.LipowskyG.FaridmoayerA.ShieldsK.ParkS.AlaimoC.KelleyK.A.Prevention of Staphylococcus aureus infections by glycoprotein vaccines synthesized in Escherichia coliJ. Infect. Dis.20915511561201410.1093/infdis/jit800399758124308931Search in Google Scholar

Yates L.E., Mills D.C., DeLisa M.P.: Bacterial Glycoengineering as a Biosynthetic Route to Customized Glycomolecules. (w) Advances in Biochemical Engineering/Biotechnology. Springer, Berlin, Heidelberg. 2018, s. 1–34YatesL.E.MillsD.C.DeLisaM.P.Bacterial Glycoengineering as a Biosynthetic Route to Customized Glycomolecules. (w) Advances in Biochemical Engineering/BiotechnologySpringerBerlin, Heidelberg2018, s. 13410.1101/118224Search in Google Scholar

Young N.M., Brisson J.R., Kelly J., Watson D.C., Tessier L., Lanthier P.H., Jarrell H.C., Cadotte N., St Michael F., Aberg E. i wsp.: Structure of the N-linked glycan present on multiple glycoproteins in the Gram-negative bacterium, Campylobacter jejuni. J. Biol. Chem. 277, 42530–42539 (2002)YoungN.M.BrissonJ.R.KellyJ.WatsonD.C.TessierL.LanthierP.H.JarrellH.C.CadotteN.St MichaelF.AbergE.Structure of the N-linked glycan present on multiple glycoproteins in the Gram-negative bacterium, Campylobacter jejuniJ. Biol. Chem2774253042539200210.1074/jbc.M20611420012186869Search in Google Scholar

Yuan J., O’Donoghue P., Ambrogelly A., Gundllapalli S., Sherrer R.L., Palioura S., Simonovic M., Soll D.: Distinct genetic code expansion strategies for selenocysteine and pyrrolysine are reflected in different aminoacyl-tRNA formation systems. FEBS Lett. 584, 342–349 (2010)YuanJ.O’DonoghueP.AmbrogellyA.GundllapalliS.SherrerR.L.PaliouraS.SimonovicM.SollD.Distinct genetic code expansion strategies for selenocysteine and pyrrolysine are reflected in different aminoacyl-tRNA formation systemsFEBS Lett.584342349201010.1016/j.febslet.2009.11.005279504619903474Search in Google Scholar

Zabczynska M., Pochec E.: The role of protein glycosylation in immune system. Post. Biochem. 61, 129–137 (2015)ZabczynskaM.PochecE.The role of protein glycosylation in immune systemPost. Biochem.611291372015Search in Google Scholar

eISSN:
2545-3149
Sprachen:
Englisch, Polnisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Mikrobiologie und Virologie