Uneingeschränkter Zugang

Sars-Cov-2 And Betacoronavirus: What Have We Learned In 8 Months?


Zitieren

Alvarez E., DeDiego M.L., Nieto-Torres J.L., Jiménez-Guardeño J.M., Marcos-Villar L., Enjuanes L.: The envelope protein of severe acute respiratory syndrome coronavirus interacts with the non-structural protein 3 and is ubiquitinated. Virology, 402, 281–291 (2010) Alvarez E. DeDiego M.L. Nieto-Torres J.L. Jiménez-Guardeño J.M. Marcos-Villar L. Enjuanes L. The envelope protein of severe acute respiratory syndrome coronavirus interacts with the non-structural protein 3 and is ubiquitinated Virology 402 281 291 201010.1016/j.virol.2010.03.015711918320409569 Search in Google Scholar

Angelini M.M., Akhlaghpour M., Neuman B.W., Buchmeier M.J.: Severe acute respiratory syndrome coronavirus nonstructural proteins 3, 4, and 6 induce double-membrane vesicles. mBio, 4, e00524–00513 (2013) Angelini M.M. Akhlaghpour M. Neuman B.W. Buchmeier M.J. Severe acute respiratory syndrome coronavirus nonstructural proteins 3, 4, and 6 induce double-membrane vesicles mBio 4 e00524 00513 201310.1128/mBio.00524-13374758723943763 Search in Google Scholar

Bhardwaj K., Liu, P., Leibowitz J.L., Kao C.C.: The coronavirus endoribonuclease Nsp15 interacts with retinoblastoma tumor suppressor protein. J. Virol. 86, 4294–4304 (2012) Bhardwaj K. Liu, P. Leibowitz J.L. Kao C.C. The coronavirus endoribonuclease Nsp15 interacts with retinoblastoma tumor suppressor protein J. Virol. 86 4294 4304 201210.1128/JVI.07012-11331863622301153 Search in Google Scholar

Bosch B.J., Bartelink W., Rottier P.J.: Cathepsin L functionally cleaves the severe acute respiratory syndrome coronavirus class I fusion protein upstream of rather than adjacent to the fusion peptide. J. Virol. 82, 8887–8890 (2008) Bosch B.J. Bartelink W. Rottier P.J. Cathepsin L functionally cleaves the severe acute respiratory syndrome coronavirus class I fusion protein upstream of rather than adjacent to the fusion peptide J. Virol. 82 8887 8890 200810.1128/JVI.00415-08251968218562523 Search in Google Scholar

Bosch B.J., van der Zee R., de Haan C.A., Rottier P.J.: The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J. Virol. 77, 8801–8811 (2003) Bosch B.J. van der Zee R. de Haan C.A. Rottier P.J. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex J. Virol. 77 8801 8811 200310.1128/JVI.77.16.8801-8811.2003 Search in Google Scholar

Bouvet M., Debarnot C., Imbert I., Selisko B., Snijder E.J., Canard B., Decroly E.: In vitro reconstitution of SARS-coronavirus mRNA cap methylation. PLoS Pathog. 6, e1000863 (2010) Bouvet M. Debarnot C. Imbert I. Selisko B. Snijder E.J. Canard B. Decroly E. In vitro reconstitution of SARS-coronavirus mRNA cap methylation PLoS Pathog. 6 e1000863 201010.1371/journal.ppat.1000863285870520421945 Search in Google Scholar

Chan J.F.-W., Kok K.-H., Zhu Z., Chu H., To K.K.-W., Yuan S., Yuen K.-Y.: Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg. Microbes Infect. 9, 221–236 (2020) Chan J.F.-W. Kok K.-H. Zhu Z. Chu H. To K.K.-W. Yuan S. Yuen K.-Y. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan Emerg. Microbes Infect. 9 221 236 202010.1080/22221751.2020.1719902706720431987001 Search in Google Scholar

Chang C.-k., Huang T.-h. i wsp.: Modular organization of SARS coronavirus nucleocapsid protein. J. Biomed. Sci. 13, 59–72 (2006) Chang C.-k. Huang T.-h. i wsp. Modular organization of SARS coronavirus nucleocapsid protein J. Biomed. Sci. 13 59 72 200610.1007/s11373-005-9035-9708955616228284 Search in Google Scholar

Chatterjee A., Johnson M.A., Serrano P., Pedrini B., Joseph J.S., Neuman B.W., Saikatendu K., Buchmeier M.J., Kuhn P., Wüthrich K.: Nuclear magnetic resonance structure shows that the severe acute respiratory syndrome coronavirus-unique domain contains a macrodomain fold. J. Virol. 83, 1823–1836 (2009) Chatterjee A. Johnson M.A. Serrano P. Pedrini B. Joseph J.S. Neuman B.W. Saikatendu K. Buchmeier M.J. Kuhn P. Wüthrich K. Nuclear magnetic resonance structure shows that the severe acute respiratory syndrome coronavirus-unique domain contains a macrodomain fold J. Virol. 83 1823 1836 200910.1128/JVI.01781-08264377219052085 Search in Google Scholar

Chen Y., Guo D. i wsp.: Biochemical and structural insights into the mechanisms of SARS coronavirus RNA ribose 2’-O-methylation by nsp16/nsp10 protein complex. PLoS Pathog. 7, e1002294 (2011) Chen Y. Guo D. i wsp. Biochemical and structural insights into the mechanisms of SARS coronavirus RNA ribose 2’-O-methylation by nsp16/nsp10 protein complex PLoS Pathog. 7 e1002294 201110.1371/journal.ppat.1002294319284322022266 Search in Google Scholar

Cornillez-Ty C.T., Liao L., Yates J.R., 3rd, Kuhn P., Buchmeier M.J.: Severe acute respiratory syndrome coronavirus nonstructural protein 2 interacts with a host protein complex involved in mitochondrial biogenesis and intracellular signaling. J. Virol. 83, 10314–10318 (2009) Cornillez-Ty C.T. Liao L. Yates J.R. 3rd Kuhn P. Buchmeier M.J. Severe acute respiratory syndrome coronavirus nonstructural protein 2 interacts with a host protein complex involved in mitochondrial biogenesis and intracellular signaling J. Virol. 83 10314 10318 200910.1128/JVI.00842-09274802419640993 Search in Google Scholar

Coutard B., Valle C., de Lamballerie X., Canard B., Seidah N.G., Decroly E.: The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res. 176, 104742 (2020) Coutard B. Valle C. de Lamballerie X. Canard B. Seidah N.G. Decroly E. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade Antiviral Res. 176 104742 202010.1016/j.antiviral.2020.104742711409432057769 Search in Google Scholar

Decroly E., Canard B. i wsp.: Crystal structure and functional analysis of the SARS-coronavirus RNA cap 2′-O-methyltransferase nsp10/nsp16 complex. PLoS Pathog. 7, e1002059 (2011) Decroly E. Canard B. i wsp. Crystal structure and functional analysis of the SARS-coronavirus RNA cap 2′-O-methyltransferase nsp10/nsp16 complex PLoS Pathog. 7 e1002059 201110.1371/journal.ppat.1002059310271021637813 Search in Google Scholar

Devaraj S.G., Wang N., Chen Z., Tseng M., Barretto N., Lin R., Peters C.J., Tseng C.T., Baker S.C., Li K.: Regulation of IRF-3-dependent innate immunity by the papain-like protease domain of the severe acute respiratory syndrome coronavirus. J. Biol. Chem. 282, 32208–32221 (2007) Devaraj S.G. Wang N. Chen Z. Tseng M. Barretto N. Lin R. Peters C.J. Tseng C.T. Baker S.C. Li K. Regulation of IRF-3-dependent innate immunity by the papain-like protease domain of the severe acute respiratory syndrome coronavirus J. Biol. Chem. 282 32208 32221 200710.1074/jbc.M704870200275604417761676 Search in Google Scholar

Dong X., Cao Y.Y., Lu X.X., Zhang J.J., Du H., Yan Y.Q., Akdis C.A., Gao Y.D.: Eleven faces of coronavirus disease 2019. Allergy, 75, 1699–1709 (2020) Dong X. Cao Y.Y. Lu X.X. Zhang J.J. Du H. Yan Y.Q. Akdis C.A. Gao Y.D. Eleven faces of coronavirus disease 2019 Allergy 75 1699 1709 202010.1111/all.14289722839732196678 Search in Google Scholar

Egloff M.-P., Canard B. i wsp.: Structural and functional basis for ADP-ribose and poly(ADP-ribose) binding by viral macro domains. J. Virol. 80, 8493–8502 (2006) Egloff M.-P. Canard B. i wsp. Structural and functional basis for ADP-ribose and poly(ADP-ribose) binding by viral macro domains J. Virol. 80 8493 8502 200610.1128/JVI.00713-06156385716912299 Search in Google Scholar

Egloff M.P., Ferron F., Campanacci V., Longhi S., Rancurel C., Dutartre H., Snijder E.J., Gorbalenya A.E., Cambillau C., Canard B.: The severe acute respiratory syndrome-coronavirus replicative protein nsp9 is a single-stranded RNA-binding subunit unique in the RNA virus world. Proc. Natl. Acad. Sci. USA, 101, 3792–3796 (2004) Egloff M.P. Ferron F. Campanacci V. Longhi S. Rancurel C. Dutartre H. Snijder E.J. Gorbalenya A.E. Cambillau C. Canard B. The severe acute respiratory syndrome-coronavirus replicative protein nsp9 is a single-stranded RNA-binding subunit unique in the RNA virus world Proc. Natl. Acad. Sci. USA 101 3792 3796 200410.1073/pnas.030787710137432315007178 Search in Google Scholar

Escors D., Ortego J., Laude H., Enjuanes L.: The Membrane M Protein Carboxy Terminus Binds to Transmissible Gastroenteritis Coronavirus Core and Contributes to Core Stability. J. Virol. 75, 1312–24 (2001) Escors D. Ortego J. Laude H. Enjuanes L. The Membrane M Protein Carboxy Terminus Binds to Transmissible Gastroenteritis Coronavirus Core and Contributes to Core Stability J. Virol. 75 1312 24 200110.1128/JVI.75.3.1312-1324.200111403711152504 Search in Google Scholar

Frieman M., Ratia K., Johnston R.E., Mesecar A.D., Baric R.S.: Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling. J. Virol. 83, 6689–6705 (2009) Frieman M. Ratia K. Johnston R.E. Mesecar A.D. Baric R.S. Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-kappaB signaling J. Virol. 83 6689 6705 200910.1128/JVI.02220-08269856419369340 Search in Google Scholar

Gao Y., Rao, Z. i wsp.: Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science, 368, 779–782 (2020) Gao Y. Rao, Z. i wsp. Structure of the RNA-dependent RNA polymerase from COVID-19 virus Science 368 779 782 202010.1126/science.abb7498716439232277040 Search in Google Scholar

Gordon D.E., Krogan N.J. i wsp.: A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 583, 459–468 (2020) Gordon D.E. Krogan N.J. i wsp. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing Nature 583 459 468 202010.1038/s41586-020-2286-9743103032353859 Search in Google Scholar

Graham R.L., Sims A.C., Brockway S.M., Baric R.S., Denison M.R.: The nsp2 replicase proteins of murine hepatitis virus and severe acute respiratory syndrome coronavirus are dispensable for viral replication. J. Virol. 79, 13399–13411 (2005) Graham R.L. Sims A.C. Brockway S.M. Baric R.S. Denison M.R. The nsp2 replicase proteins of murine hepatitis virus and severe acute respiratory syndrome coronavirus are dispensable for viral replication J. Virol. 79 13399 13411 200510.1128/JVI.79.21.13399-13411.2005126261016227261 Search in Google Scholar

Gu J., Korteweg C.: Pathology and pathogenesis of severe acute respiratory syndrome. Am. J. Pathol. 170, 1136–1147 (2007) Gu J. Korteweg C. Pathology and pathogenesis of severe acute respiratory syndrome Am. J. Pathol. 170 1136 1147 200710.2353/ajpath.2007.061088182944817392154 Search in Google Scholar

Hoffmann M., Kleine-Weber H., Pöhlmann S.: A multibasic cleavage site in the spike protein of SARS-CoV-2 Is essential for infection of human lung cells. Mol. Cell. 78, 779–784.e775 (2020) Hoffmann M. Kleine-Weber H. Pöhlmann S. A multibasic cleavage site in the spike protein of SARS-CoV-2 Is essential for infection of human lung cells Mol. Cell. 78 779 784.e775 202010.1016/j.molcel.2020.04.022719406532362314 Search in Google Scholar

Hoffmann M., Pöhlmann S. i wsp.: SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 181, 271–280.e278 (2020) Hoffmann M. Pöhlmann S. i wsp. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor Cell 181 271 280.e278 202010.1016/j.cell.2020.02.052710262732142651 Search in Google Scholar

Huang C., Lokugamage K.G., Rozovics J.M., Narayanan K., Semler B.L., Makino S.: SARS coronavirus nsp1 protein induces template-dependent endonucleolytic cleavage of mRNAs: viral mRNAs are resistant to nsp1-induced RNA cleavage. PLoS Pathog. 7, e1002433 (2011) Huang C. Lokugamage K.G. Rozovics J.M. Narayanan K. Semler B.L. Makino S. SARS coronavirus nsp1 protein induces template-dependent endonucleolytic cleavage of mRNAs: viral mRNAs are resistant to nsp1-induced RNA cleavage PLoS Pathog. 7 e1002433 201110.1371/journal.ppat.1002433323423622174690 Search in Google Scholar

Huang C., Cao B. i wsp.: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 395, 497–506 (2020) Huang C. Cao B. i wsp. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China Lancet 395 497 506 202010.1016/S0140-6736(20)30183-5715929931986264 Search in Google Scholar

Ivanov K.A., Thiel V., Dobbe J.C., van der Meer, Y., Snijder E.J., Ziebuhr J.: Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase. J. Virol. 78, 5619–5632 (2004) Ivanov K.A. Thiel V. Dobbe J.C. van der Meer, Y. Snijder E.J. Ziebuhr J. Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase J. Virol. 78 5619 5632 200410.1128/JVI.78.11.5619-5632.200441583215140959 Search in Google Scholar

Kamitani W., Huang C., Narayanan K., Lokugamage K.G., Makino S.: A two-pronged strategy to suppress host protein synthesis by SARS coronavirus Nsp1 protein. Nat. Struct. Mol. Biol. 16, 1134–1140 (2009) Kamitani W. Huang C. Narayanan K. Lokugamage K.G. Makino S. A two-pronged strategy to suppress host protein synthesis by SARS coronavirus Nsp1 protein Nat. Struct. Mol. Biol. 16 1134 1140 200910.1038/nsmb.1680278418119838190 Search in Google Scholar

Kamitani W., Narayanan K., Huang C., Lokugamage K., Ikegami T., Ito N., Kubo H., Makino S.: Severe acute respiratory syndrome coronavirus nsp1 protein suppresses host gene expression by promoting host mRNA degradation. Proc. Natl. Acad. Sci. USA, 103, 12885–12890 (2006) Kamitani W. Narayanan K. Huang C. Lokugamage K. Ikegami T. Ito N. Kubo H. Makino S. Severe acute respiratory syndrome coronavirus nsp1 protein suppresses host gene expression by promoting host mRNA degradation Proc. Natl. Acad. Sci. USA 103 12885 12890 200610.1073/pnas.0603144103156894216912115 Search in Google Scholar

Kang S., Chen S. i in.: Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites. Acta Pharm. Sin B. 10, 1228–1238 (2020) Kang S. Chen S. i in. Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites Acta Pharm. Sin B. 10 1228 1238 202010.1016/j.apsb.2020.04.009719492132363136 Search in Google Scholar

Khailany R.A., Safdar M., Ozaslan M.: Genomic characterization of a novel SARS-CoV-2. Gene Rep. 100682 (2020) Khailany R.A. Safdar M. Ozaslan M. Genomic characterization of a novel SARS-CoV-2 Gene Rep. 100682 202010.1016/j.genrep.2020.100682716148132300673 Search in Google Scholar

Kim D., Lee J.Y., Yang J.S., Kim J.W., Kim V.N., Chang H.: The Architecture of SARS-CoV-2 Transcriptome. Cell, 181, 914–921. e910 (2020) Kim D. Lee J.Y. Yang J.S. Kim J.W. Kim V.N. Chang H. The Architecture of SARS-CoV-2 Transcriptome Cell 181 914 921 e910 202010.1016/j.cell.2020.04.011717950132330414 Search in Google Scholar

Kirchdoerfer R.N., Ward A.B.: Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors. Nat. Commun. 10, 2342 (2019) Kirchdoerfer R.N. Ward A.B. Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors Nat. Commun. 10 2342 201910.1038/s41467-019-10280-3653866931138817 Search in Google Scholar

Lan J., Wang X. i wsp.: Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 581, 215–220 (2020) Lan J. Wang X. i wsp. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor Nature 581 215 220 202010.1038/s41586-020-2180-532225176 Search in Google Scholar

Li M.-Y., Li L., Zhang Y., Wang X.-S.: Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect. Dis. Poverty. 9, 45 (2020) Li M.-Y. Li L. Zhang Y. Wang X.-S. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues Infect. Dis. Poverty. 9 45 202010.1186/s40249-020-00662-x718653432345362 Search in Google Scholar

Li Y., Zhou W., Yang L., You R.: Physiological and pathological regulation of ACE2, the SARS-CoV-2 receptor. Pharmacol Res. 157, 104833–104833 (2020) Li Y. Zhou W. Yang L. You R. Physiological and pathological regulation of ACE2, the SARS-CoV-2 receptor Pharmacol Res. 157 104833 104833 202010.1016/j.phrs.2020.104833719480732302706 Search in Google Scholar

Lindner H.A., Lytvyn V., Qi H., Lachance P., Ziomek E., Ménard R.: Selectivity in ISG15 and ubiquitin recognition by the SARS coronavirus papain-like protease. Arch. Biochem. Biophys. 466, 8–14 (2007) Lindner H.A. Lytvyn V. Qi H. Lachance P. Ziomek E. Ménard R. Selectivity in ISG15 and ubiquitin recognition by the SARS coronavirus papain-like protease Arch. Biochem. Biophys. 466 8 14 200710.1016/j.abb.2007.07.006709434117692280 Search in Google Scholar

Luan J., Lu Y., Jin X., Zhang L.: Spike protein recognition of mammalian ACE2 predicts the host range and an optimized ACE2 for SARS-CoV-2 infection. Biochem Biophys. Res. Commun. 526, 165–169 (2020) Luan J. Lu Y. Jin X. Zhang L. Spike protein recognition of mammalian ACE2 predicts the host range and an optimized ACE2 for SARS-CoV-2 infection Biochem Biophys. Res. Commun. 526 165 169 202010.1016/j.bbrc.2020.03.047710251532201080 Search in Google Scholar

Lundin A., Trybala E. i wsp.: Targeting membrane-bound viral RNA synthesis reveals potent inhibition of diverse coronaviruses including the middle East respiratory syndrome virus. PLoS Pathog. 10, e1004166–e1004166 (2014) Lundin A. Trybala E. i wsp. Targeting membrane-bound viral RNA synthesis reveals potent inhibition of diverse coronaviruses including the middle East respiratory syndrome virus PLoS Pathog. 10 e1004166 e1004166 201410.1371/journal.ppat.1004166403861024874215 Search in Google Scholar

Ma Y., Wu L., Shaw N., Gao Y., Wang J., Sun Y., Lou Z., Yan L., Zhang R., Rao Z.: Structural basis and functional analysis of the SARS coronavirus nsp14-nsp10 complex. Proc. Natl. Acad. Sci. USA, 112, 9436–9441 (2015) Ma Y. Wu L. Shaw N. Gao Y. Wang J. Sun Y. Lou Z. Yan L. Zhang R. Rao Z. Structural basis and functional analysis of the SARS coronavirus nsp14-nsp10 complex Proc. Natl. Acad. Sci. USA 112 9436 9441 201510.1073/pnas.1508686112452280626159422 Search in Google Scholar

Minakshi R., Padhan K., Rani M., Khan N., Ahmad F., Jameel S.: The SARS Coronavirus 3a protein causes endoplasmic reticulum stress and induces ligand-independent downregulation of the type 1 interferon receptor. PLoS One, 4, e8342 (2009) Minakshi R. Padhan K. Rani M. Khan N. Ahmad F. Jameel S. The SARS Coronavirus 3a protein causes endoplasmic reticulum stress and induces ligand-independent downregulation of the type 1 interferon receptor PLoS One 4 e8342 200910.1371/journal.pone.0008342279123120020050 Search in Google Scholar

Mortola E., Roy P.: Efficient assembly and release of SARS coronavirus-like particles by a heterologous expression system. FEBS Lett. 576, 174–178 (2004) Mortola E. Roy P. Efficient assembly and release of SARS coronavirus-like particles by a heterologous expression system FEBS Lett. 576 174 178 200410.1016/j.febslet.2004.09.009712615315474033 Search in Google Scholar

Neuman B.W., Kuhn P. i wsp.: Proteomics analysis unravels the functional repertoire of coronavirus nonstructural protein 3. J. Virol. 82, 5279–5294 (2008) Neuman B.W. Kuhn P. i wsp. Proteomics analysis unravels the functional repertoire of coronavirus nonstructural protein 3 J. Virol. 82 5279 5294 200810.1128/JVI.02631-07239518618367524 Search in Google Scholar

Neuman B.W., Buchmeier M.J. i wsp.: A structural analysis of M protein in coronavirus assembly and morphology. J. Struct. Biol. 174, 11–22 (2011) Neuman B.W. Buchmeier M.J. i wsp. A structural analysis of M protein in coronavirus assembly and morphology J. Struct. Biol. 174 11 22 201110.1016/j.jsb.2010.11.021448606121130884 Search in Google Scholar

Nile S.H., Nile A., Qiu J., Li L., Jia X., Kai G.: COVID-19: Pathogenesis, cytokine storm and therapeutic potential of interferons. Cytokine Growth Factor Rev. 53, 66–70 (2020) Nile S.H. Nile A. Qiu J. Li L. Jia X. Kai G. COVID-19: Pathogenesis, cytokine storm and therapeutic potential of interferons Cytokine Growth Factor Rev. 53 66 70 202010.1016/j.cytogfr.2020.05.002720466932418715 Search in Google Scholar

Ou X., Qian Z. i wsp.: Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat. Commun. 11, 1620 (2020) Ou X. Qian Z. i wsp. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV Nat. Commun. 11 1620 202010.1038/s41467-020-15562-9710051532221306 Search in Google Scholar

Oudshoorn D., Rijs K., Limpens R., Groen K., Koster A.J., Snijder E.J., Kikkert M., Bárcena M.: Expression and Cleavage of Middle East Respiratory Syndrome Coronavirus nsp3–4 Polyprotein Induce the Formation of Double-Membrane Vesicles That Mimic Those Associated with Coronaviral RNA Replication. mBio, 8 (2017) Oudshoorn D. Rijs K. Limpens R. Groen K. Koster A.J. Snijder E.J. Kikkert M. Bárcena M. Expression and Cleavage of Middle East Respiratory Syndrome Coronavirus nsp3–4 Polyprotein Induce the Formation of Double-Membrane Vesicles That Mimic Those Associated with Coronaviral RNA Replication mBio 8 201710.1128/mBio.01658-17569855329162711 Search in Google Scholar

Park S.E.: Epidemiology, virology, and clinical features of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2; Coronavirus Disease-19). Clin Exp Pediatr. 63, 119–124 (2020) Park S.E. Epidemiology, virology, and clinical features of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2; Coronavirus Disease-19) Clin Exp Pediatr. 63 119 124 202010.3345/cep.2020.00493717078432252141 Search in Google Scholar

Phan T.: Genetic diversity and evolution of SARS-CoV-2. Infect Genet Evol. 81, 104260 (2020) Phan T. Genetic diversity and evolution of SARS-CoV-2 Infect Genet Evol. 81 104260 202010.1016/j.meegid.2020.104260710620332092483 Search in Google Scholar

Qian Z., Dominguez S.R., Holmes K.V.: Role of the spike glycoprotein of human Middle East respiratory syndrome coronavirus (MERS-CoV) in virus entry and syncytia formation. PLoS One, 8, e76469 (2013) Qian Z. Dominguez S.R. Holmes K.V. Role of the spike glycoprotein of human Middle East respiratory syndrome coronavirus (MERS-CoV) in virus entry and syncytia formation PLoS One 8 e76469 201310.1371/journal.pone.0076469378967424098509 Search in Google Scholar

Raj V.S., Haagmans B.L. i wsp.: Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature, 495, 251–254 (2013) Raj V.S. Haagmans B.L. i wsp. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC Nature 495 251 254 201310.1038/nature12005709532623486063 Search in Google Scholar

Schoeman D., Fielding B.C.: Coronavirus envelope protein: current knowledge. Virol. J. 16, 69 (2019) Schoeman D. Fielding B.C. Coronavirus envelope protein: current knowledge Virol. J. 16 69 201910.1186/s12985-019-1182-0653727931133031 Search in Google Scholar

Serrano P., Johnson M.A., Chatterjee A., Neuman B.W., Joseph J.S., Buchmeier M.J., Kuhn P., Wüthrich K.: Nuclear magnetic resonance structure of the nucleic acid-binding domain of severe acute respiratory syndrome coronavirus nonstructural protein 3. J. Virol. 83, 12998–13008 (2009) Serrano P. Johnson M.A. Chatterjee A. Neuman B.W. Joseph J.S. Buchmeier M.J. Kuhn P. Wüthrich K. Nuclear magnetic resonance structure of the nucleic acid-binding domain of severe acute respiratory syndrome coronavirus nonstructural protein 3 J. Virol. 83 12998 13008 200910.1128/JVI.01253-09278685619828617 Search in Google Scholar

Shang J., Wan Y., Luo C., Ye G., Geng Q., Auerbach A., Li F.: Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. USA, 117, 11727–11734 (2020) Shang J. Wan Y. Luo C. Ye G. Geng Q. Auerbach A. Li F. Cell entry mechanisms of SARS-CoV-2 Proc. Natl. Acad. Sci. USA 117 11727 11734 202010.1073/pnas.2003138117726097532376634 Search in Google Scholar

Shang J., Ye G., Shi K., Wan Y., Luo C., Aihara H., Geng Q., Auerbach A., Li F.: Structural basis of receptor recognition by SARS-CoV-2. Nature, 581, 221–224 (2020) Shang J. Ye G. Shi K. Wan Y. Luo C. Aihara H. Geng Q. Auerbach A. Li F. Structural basis of receptor recognition by SARS-CoV-2 Nature 581 221 224 202010.1038/s41586-020-2179-y732898132225175 Search in Google Scholar

Sigrist C.J., Bridge A., Le Mercier P.: A potential role for integrins in host cell entry by SARS-CoV-2. Antiviral Res. 177, 104759 (2020) Sigrist C.J. Bridge A. Le Mercier P. A potential role for integrins in host cell entry by SARS-CoV-2 Antiviral Res. 177 104759 202010.1016/j.antiviral.2020.104759711409832130973 Search in Google Scholar

Simmons G., Gosalia D.N., Rennekamp A.J., Reeves J.D., Diamond S.L., Bates P.: Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc. Natl. Acad. Sci. USA, 102, 11876–11881 (2005) Simmons G. Gosalia D.N. Rennekamp A.J. Reeves J.D. Diamond S.L. Bates P. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry Proc. Natl. Acad. Sci. USA 102 11876 11881 200510.1073/pnas.0505577102118801516081529 Search in Google Scholar

Siu K.L., Kok K.H., Ng M.H., Poon V.K., Yuen K.Y., Zheng B.J., Jin D.Y.: Severe acute respiratory syndrome coronavirus M protein inhibits type I interferon production by impeding the formation of TRAF3.TANK.TBK1/IKKepsilon complex. J. Biol. Chem. 284, 16202–16209 (2009) Siu K.L. Kok K.H. Ng M.H. Poon V.K. Yuen K.Y. Zheng B.J. Jin D.Y. Severe acute respiratory syndrome coronavirus M protein inhibits type I interferon production by impeding the formation of TRAF3.TANK.TBK1/IKKepsilon complex J. Biol. Chem. 284 16202 16209 200910.1074/jbc.M109.008227271351419380580 Search in Google Scholar

Siu Y.L., Nal B. i wsp.: The M, E, and N structural proteins of the severe acute respiratory syndrome coronavirus are required for efficient assembly, trafficking, and release of virus-like particles. J. Virol. 82, 11318–11330 (2008) Siu Y.L. Nal B. i wsp. The M, E, and N structural proteins of the severe acute respiratory syndrome coronavirus are required for efficient assembly, trafficking, and release of virus-like particles J. Virol. 82 11318 11330 200810.1128/JVI.01052-08257327418753196 Search in Google Scholar

Snijder E.J., van der Meer, Y., Zevenhoven-Dobbe J., Onderwater J.J.M., van der Meulen J., Koerten H.K., Mommaas A.M.: Ultrastructure and Origin of Membrane Vesicles Associated with the Severe Acute Respiratory Syndrome Coronavirus Replication Complex. J. Virol. 80, 5927–40 (2006) Snijder E.J. van der Meer, Y. Zevenhoven-Dobbe J. Onderwater J.J.M. van der Meulen J. Koerten H.K. Mommaas A.M. Ultrastructure and Origin of Membrane Vesicles Associated with the Severe Acute Respiratory Syndrome Coronavirus Replication Complex J. Virol. 80 5927 40 200610.1128/JVI.02501-05147260616731931 Search in Google Scholar

Srinivasan S., Cui H., Gao Z., Liu M., Lu S., Mkandawire W., Narykov O., Sun M., Korkin D.: Structural Genomics of SARS-CoV-2 Indicates Evolutionary Conserved Functional Regions of Viral Proteins. Viruses, 12, 360 (2020) Srinivasan S. Cui H. Gao Z. Liu M. Lu S. Mkandawire W. Narykov O. Sun M. Korkin D. Structural Genomics of SARS-CoV-2 Indicates Evolutionary Conserved Functional Regions of Viral Proteins Viruses 12 360 202010.3390/v12040360723216432218151 Search in Google Scholar

Subissi L., Imbert I., Ferron F., Collet A., Coutard B., Decroly E., Canard B.: SARS-CoV ORF1b-encoded nonstructural proteins 12–16: replicative enzymes as antiviral targets. Antiviral Res. 101, 122–130 (2014) Subissi L. Imbert I. Ferron F. Collet A. Coutard B. Decroly E. Canard B. SARS-CoV ORF1b-encoded nonstructural proteins 12–16: replicative enzymes as antiviral targets Antiviral Res. 101 122 130 201410.1016/j.antiviral.2013.11.006711386424269475 Search in Google Scholar

Tanaka T., Kamitani W., DeDiego M.L., Enjuanes L., Matsuura Y.: Severe acute respiratory syndrome coronavirus nsp1 facilitates efficient propagation in cells through a specific translational shutoff of host mRNA. J. Virol. 86, 11128–11137 (2012) Tanaka T. Kamitani W. DeDiego M.L. Enjuanes L. Matsuura Y. Severe acute respiratory syndrome coronavirus nsp1 facilitates efficient propagation in cells through a specific translational shutoff of host mRNA J. Virol. 86 11128 11137 201210.1128/JVI.01700-12345716522855488 Search in Google Scholar

Tang T.-K., Wu M.P.J., Chen S.-T., Hou M.-H., Hong M.-H., Pan F.-M., Yu H.-M., Chen J.-H., Yao C.-W., Wang A.H.J.: Biochemical and immunological studies of nucleocapsid proteins of severe acute respiratory syndrome and 229E human coronaviruses. Proteomics, 5, 925–937 (2005) Tang T.-K. Wu M.P.J. Chen S.-T. Hou M.-H. Hong M.-H. Pan F.-M. Yu H.-M. Chen J.-H. Yao C.-W. Wang A.H.J. Biochemical and immunological studies of nucleocapsid proteins of severe acute respiratory syndrome and 229E human coronaviruses Proteomics 5 925 937 200510.1002/pmic.200401204716762015759315 Search in Google Scholar

Tomar S., Johnston M.L., St John S.E., Osswald H.L., Nyalapatla P.R., Paul L.N., Ghosh A.K., Denison M.R., Mesecar A.D.: Ligand-induced Dimerization of Middle East Respiratory Syndrome (MERS) Coronavirus nsp5 Protease (3CLpro): IMPLICATIONS FOR nsp5 REGULATION AND THE DEVELOPMENT OF ANTIVIRALS. J. Biol. Chem. 290, 19403–19422 (2015) Tomar S. Johnston M.L. St John S.E. Osswald H.L. Nyalapatla P.R. Paul L.N. Ghosh A.K. Denison M.R. Mesecar A.D. Ligand-induced Dimerization of Middle East Respiratory Syndrome (MERS) Coronavirus nsp5 Protease (3CLpro): IMPLICATIONS FOR nsp5 REGULATION AND THE DEVELOPMENT OF ANTIVIRALS J. Biol. Chem. 290 19403 19422 201510.1074/jbc.M115.651463452810626055715 Search in Google Scholar

Tseng Y.T., Wang S.M., Huang K.J., Wang C.T.: SARS-CoV envelope protein palmitoylation or nucleocapid association is not required for promoting virus-like particle production. J. Biomed. Sci. 21, 4 (2014) Tseng Y.T. Wang S.M. Huang K.J. Wang C.T. SARS-CoV envelope protein palmitoylation or nucleocapid association is not required for promoting virus-like particle production J. Biomed. Sci. 21 4 201410.1186/1423-0127-21-34401408424766657 Search in Google Scholar

Vennema H., Godeke G.J., Rossen J.W., Voorhout W.F., Horzinek M.C., Opstelten D.J., Rottier P.J.: Nucleocapsid-independent assembly of coronavirus-like particles by co-expression of viral envelope protein genes. EMBO J. 15, 2020–2028 (1996) Vennema H. Godeke G.J. Rossen J.W. Voorhout W.F. Horzinek M.C. Opstelten D.J. Rottier P.J. Nucleocapsid-independent assembly of coronavirus-like particles by co-expression of viral envelope protein genes EMBO J. 15 2020 2028 199610.1002/j.1460-2075.1996.tb00553.x4501218617249 Search in Google Scholar

Walls A.C., Park Y.J., Tortorici M.A., Wall A., McGuire A.T., Veesler D.: Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell, 181, 281–292.e286 (2020) Walls A.C. Park Y.J. Tortorici M.A. Wall A. McGuire A.T. Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein Cell 181 281 292.e286 202010.1016/j.cell.2020.02.058710259932155444 Search in Google Scholar

Wang C., Liu Z., Chen Z., Huang X., Xu M., He T., Zhang Z.: The establishment of reference sequence for SARS-CoV-2 and variation analysis. J. Med. Virol. 92, 667–674 (2020) Wang C. Liu Z. Chen Z. Huang X. Xu M. He T. Zhang Z. The establishment of reference sequence for SARS-CoV-2 and variation analysis J. Med. Virol. 92 667 674 202010.1002/jmv.25762722840032167180 Search in Google Scholar

Wang H., Yang P., Liu K., Guo F., Zhang Y., Zhang G., Jiang C.: SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway. Cell Res. 18, 290–301 (2008) Wang H. Yang P. Liu K. Guo F. Zhang Y. Zhang G. Jiang C. SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway Cell Res. 18 290 301 200810.1038/cr.2008.15709189118227861 Search in Google Scholar

Watanabe Y., Allen J.D., Wrapp D., McLellan J.S., Crispin M.: Site-specific glycan analysis of the SARS-CoV-2 spike. Science, eabb9983 (2020) Watanabe Y. Allen J.D. Wrapp D. McLellan J.S. Crispin M. Site-specific glycan analysis of the SARS-CoV-2 spike Science eabb9983 202010.1126/science.abb9983719990332366695 Search in Google Scholar

Wrapp D., Wang N., Corbett K.S., Goldsmith J.A., Hsieh C.L., Abiona O., Graham B.S., McLellan J.S.: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 367, 1260–1263 (2020) Wrapp D. Wang N. Corbett K.S. Goldsmith J.A. Hsieh C.L. Abiona O. Graham B.S. McLellan J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation Science 367 1260 1263 202010.1126/science.abb2507716463732075877 Search in Google Scholar

Xu Z., Wang F.S.: Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 8, 420–422 (2020) Xu Z. Wang F.S. Pathological findings of COVID-19 associated with acute respiratory distress syndrome Lancet Respir. Med. 8 420 422 202010.1016/S2213-2600(20)30076-X716477132085846 Search in Google Scholar

Yan R., Zhang Y., Li Y., Xia L., Guo Y., Zhou Q.: Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science, 367, 1444–1448 (2020) Yan R. Zhang Y. Li Y. Xia L. Guo Y. Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2 Science 367 1444 1448 202010.1126/science.abb2762716463532132184 Search in Google Scholar

Zeng W., Jin T. i wsp.: Biochemical characterization of SARS-CoV-2 nucleocapsid protein. Biochem Biophys. Res. Commun. 527, 618–623 (2020) Zeng W. Jin T. i wsp. Biochemical characterization of SARS-CoV-2 nucleocapsid protein Biochem Biophys. Res. Commun. 527 618 623 202010.1016/j.bbrc.2020.04.136719049932416961 Search in Google Scholar

Zhai Y., Sun F., Li X., Pang H., Xu X., Bartlam M., Rao Z.: Insights into SARS-CoV transcription and replication from the structure of the nsp7-nsp8 hexadecamer. Nat. Struct. Mol. Biol. 12, 980–986 (2005) Zhai Y. Sun F. Li X. Pang H. Xu X. Bartlam M. Rao Z. Insights into SARS-CoV transcription and replication from the structure of the nsp7-nsp8 hexadecamer Nat. Struct. Mol. Biol. 12 980 986 200510.1038/nsmb999709691316228002 Search in Google Scholar

Zhang L., Li L., Yan, L., Ming Z., Jia Z., Lou Z., Rao Z.: Structural and Biochemical Characterization of Endoribonuclease Nsp15 Encoded by Middle East Respiratory Syndrome Coronavirus. J. Virol. 92, e00893–18 (2018) Zhang L. Li L. Yan, L. Ming Z. Jia Z. Lou Z. Rao Z. Structural and Biochemical Characterization of Endoribonuclease Nsp15 Encoded by Middle East Respiratory Syndrome Coronavirus J. Virol. 92 e00893 18 201810.1128/JVI.00893-18620647330135128 Search in Google Scholar

eISSN:
2545-3149
Sprachen:
Englisch, Polnisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Mikrobiologie und Virologie