Zitieren

1. Ahlström MG, Thyssen JP, Wennervaldt M, Menné T, Johansen JD. Nickel allergy and allergic contact dermatitis: A clinical review of immunology, epidemiology, exposure, and treatment. Contact Dermatitis 2019;81(4):227-41. doi: 10.1111/cod.13327.10.1111/cod.13327 Search in Google Scholar

2. Woźniak D, Cichy W, Przysławski J, Drzymała-Czyż S. The role of micro-biota and enteroendocrine cells in maintaining homeostasis in the human digestive tract. Adv Med Sci 2021;66(2):284-92. doi: 10.1016/j.advms.2021.05.003.10.1016/j.advms.2021.05.003 Search in Google Scholar

3. Madison A, Kiecolt-Glaser JK. Stress, depression, diet, and the gut microbiota: human-bacteria interactions at the core of psychoneuroimmunology and nutrition. Curr Opin Behav Sci 2019;28:105-10. doi: 10.1016/j.cobeha.2019.01.011.10.1016/j.cobeha.2019.01.011 Search in Google Scholar

4. Tramontana M, Bianchi L, Hansel K, Agostinelli D, Stingeni L. Nickel allergy: epidemiology, pathomechanism, clinical patterns, treatment and prevention programs. Endocr Metab Immune Disord Drug Targets 2020;20(7):992-1002. doi: 10.2174/1871530320666200128141900.10.2174/1871530320666200128141900 Search in Google Scholar

5. Denkhaus E, Salnikow K. Nickel essentiality, toxicity, and carcinogenicity. Crit Rev Oncol Hematol 2002;42(1):35-56. doi: 10.1016/s1040-8428(01)00214-1.10.1016/S1040-8428(01)00214-1 Search in Google Scholar

6. Zambelli B, Ciurli S. Nickel and human health. Met Ions Life Sci 2013;13:321-57. doi: 10.1007/978-94-007-7500-8_10.10.1007/978-94-007-7500-8_1024470096 Search in Google Scholar

7. Zhao J, Shi X, Castranova V, Ding M. Occupational toxicology of nickel and nickel compounds. J Environ Pathol Toxicol Oncol 2009;28(3):177-208. doi: 10.1615/jenvironpatholtoxicoloncol.v28.i3.10.10.1615/JEnvironPatholToxicolOncol.v28.i3.10 Search in Google Scholar

8. Guo H, Liu H, Wu H, Cui H, Fang J, Zuo Z, et al. Nickel carcinogenesis mechanism: DNA damage. Int J Mol Sci 2019;20(19):4690. doi: 10.3390/ijms20194690.10.3390/ijms20194690680200931546657 Search in Google Scholar

9. Zambelli B, Uversky VN, Ciurli S. Nickel impact on human health: An intrinsic disorder perspective. Biochim Biophys Acta 2016;1864(12):1714-31. doi: 10.1016/j.bbapap.2016.09.008.10.1016/j.bbapap.2016.09.00827645710 Search in Google Scholar

10. Barceloux DG. Zinc. J Toxicol Clin Toxicol 1999;37(2):279-92. doi: 10.1081/clt-100102426.10.1081/CLT-10010242610382562 Search in Google Scholar

11. Zdrojewicz Z, Popowicz E, Winiarski J. Nikiel – rola w organizmie człowieka i działanie toksyczne. Pol Merkur Lekarski 2016;41(242):115-8. Search in Google Scholar

12. Ringborg E, Lidén C, Julander A. Nickel on the market: a baseline survey of articles in ‘prolonged contact’ with skin. Contact Dermatitis 2016;75(2):77-81. doi: 10.1111/cod.12602.10.1111/cod.1260227125984 Search in Google Scholar

13. Bencko V, Wagner V, Wagnerová M, Reichrtová E. Immuno-biochemical findings in groups of individuals occupationally and nonoccupationally exposed to emissions containing nickel and cobalt. J Hyg Epidemiol Microbiol Immunol 1983;27(4):387-94. Search in Google Scholar

14. Shirakawa T, Kusaka Y, Morimoto K. Specific IgE antibodies to nickel in workers with known reactivity to cobalt. Clin Exp Allergy 1992;22(2):213-8. doi: 10.1111/j.1365-2222.1992.tb03075.x.10.1111/j.1365-2222.1992.tb03075.x1571814 Search in Google Scholar

15. Kumar V, Mishra RK, Kaur G, Dutta D. Cobalt and nickel impair DNA metabolism by the oxidative stress independent pathway. Metallomics 2017;9(11):1596-609. doi: 10.1039/c7mt00231a.10.1039/C7MT00231A Search in Google Scholar

16. Łańczak A, Choręziak A, Płocka M, Sadowska-Przytocka A, Czarnecka-Operacz M, Adamski Z, et al. Nickel-free environment – dreams vs. reality: Everyday utilities as a source of nickel and cobalt for patients sensitized to these metals. JMS 2019;88(3):150-5. doi: 10.20883/jms.357.10.20883/jms.357 Search in Google Scholar

17. Wojciechowska M, Kołodziejczyk J, Gocki J, Bartuzi Z. Nadwrażliwość na nikiel. Alerg Astma Immunol 2008;13(3):136-40. Search in Google Scholar

18. Genchi G, Carocci A, Lauria G, Sinicropi MS, Catalano A. Nickel: human health and environmental toxicology. Int J Environ Res Public Health 2020;17(3):679. doi: 10.3390/ijerph17030679.10.3390/ijerph17030679703709031973020 Search in Google Scholar

19. Guarneri F, Costa C, Cannavò SP, Catania S, Bua GD, Fenga C, et al. Release of nickel and chromium in common foods during cooking in 18/10 (grade 316) stainless steel pots. Contact Dermatitis 2017;76(1):40-8. doi: 10.1111/cod.12692.10.1111/cod.1269227804135 Search in Google Scholar

20. EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific Opinion on the risks to public health related to the presence of nickel in food and drinking water. EFSA J 2015;13(2):4002.10.2903/j.efsa.2015.4002 Search in Google Scholar

21. EFSA Panel on Contaminants in the Food Chain (CONTAM). Update of the risk assessment of nickel in food and drinking water. EFSA J 2020;18(11):6268. doi: 10.2903/j.efsa.2020.6268.10.2903/j.efsa.2020.6268764371133193868 Search in Google Scholar

22. Jensen CS, Menné T, Johansen JD. Systemic contact dermatitis after oral exposure to nickel: a review with a modified meta-analysis. Contact Dermatitis 2006;54(2):79-86. doi: 10.1111/j.0105-1873.2006.00773.x.10.1111/j.0105-1873.2006.00773.x16487279 Search in Google Scholar

23. Ricciardi L, Arena A, Arena E, Zambito M, Ingrassia A, Valenti G, et al. Systemic nickel allergy syndrome: epidemiological data from four Italian allergy units. Int J Immunopathol Pharmacol 2014;27(1):131-6. doi: 10.1177/039463201402700118.10.1177/03946320140270011824674689 Search in Google Scholar

24. Bibbò S, Ianiro G, Giorgio V, Scaldaferri F, Masucci L, Gasbarrini A, et al. The role of diet on gut microbiota composition. Eur Rev Med Pharmacol Sci 2016;20(22):4742-9. Search in Google Scholar

25. Stinson LF, Boyce MC, Payne MS, Keelan JA. The not-so-sterile womb: evidence that the human fetus is exposed to bacteria prior to birth. Front Microbiol 2019;10:1124. doi: 10.3389/fmicb.2019.01124.10.3389/fmicb.2019.01124655821231231319 Search in Google Scholar

26. Zoetendal EG, Vaughan EE, de Vos WM. A microbial world within us. Mol Microbiol 2006;59(6):1639-50. doi: 10.1111/j.1365-2958.2006.05056.x.10.1111/j.1365-2958.2006.05056.x16553872 Search in Google Scholar

27. Barczyńska R, Śliżewska K, Libudzisz Z, Litwin M. Rola mikrobioty jelit w utrzymaniu prawidłowej masy ciała. Stand Med, Pediatr 2013;1:55-62. Search in Google Scholar

28. Wang HX, Wang YP. Gut microbiota-brain axis. Chin Med J (Engl) 2016;129(19):2373-80. doi: 10.4103/0366-6999.190667.10.4103/0366-6999.190667504002527647198 Search in Google Scholar

29. Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano GAD, Gasbarrini A, et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 2019;7(1):14. doi: 10.3390/microorganisms7010014.10.3390/microorganisms7010014635193830634578 Search in Google Scholar

30. Odamaki T, Kato K, Sugahara H, Hashikura N, Takahashi S, Xiao JZ, et al. Age-related changes in gut microbiota composition from newborn to centenarian: A cross-sectional study. BMC Microbiol 2016;16(90):1-12. doi: 10.1186/s12866-016-0708-5.10.1186/s12866-016-0708-5487973227220822 Search in Google Scholar

31. Riva A, Borgo F, Lassandro C, Verduci E, Morace G, Borghi E, et al. Pediatric obesity is associated with an altered gut microbiota and discordant shifts in Firmicutes populations. Environ Microbiol 2017;19(1):95-105. doi: 10.1111/1462-2920.13463.10.1111/1462-2920.13463551618627450202 Search in Google Scholar

32. Gregorczyk-Maślanka K, Kurzawa R. Mikrobiota organizmu ludzkiego i jej wpływ na homeostazę immunologiczną – część I. Alerg Astma Immun 2016;21(3):146-50. Search in Google Scholar

33. Shreiner AB, Kao JY, Young VB. The gut microbiome in health and in disease. Curr Opin Gastroenterol 2015;31(1):69-75. doi: 10.1097/MOG.0000000000000139.10.1097/MOG.0000000000000139429001725394236 Search in Google Scholar

34. Drzymała-Czyż S, Banasiewicz T, Biczysko M, Walkowiak J. Maślany w nieswoistych zapaleniach jelit. Fam Med Primary Care Rev 2011;13(2):305-7. Search in Google Scholar

35. Książek EE, Chęcińska-Maciejewska Z, Grochowska A, Krauss H. Czynniki żywieniowe wpływające na kształtowanie mikrobioty przewodu pokarmowego. In: Krauss H, editor. Fizjologia żywienia. Warszawa: Wydawnictwo Lekarskie PZWL; 2019. p. 231-49. Search in Google Scholar

36. Mangiola F, Ianiro G, Franceschi F, Fagiuoli S, Gasbarrini G, Gasbarrini A. Gut microbiota in autism and mood disorders. World J Gastroenterol 2016;22(1):361-8. doi: 10.3748/wjg.v22.i1.361.10.3748/wjg.v22.i1.361469849826755882 Search in Google Scholar

37. Rosenfeld CS. Gut dysbiosis in animals due to environmental chemical exposures. Front Cell Infect Microbiol 2017;7:396. doi: 10.3389/fcimb.2017.00396.10.3389/fcimb.2017.00396559610728936425 Search in Google Scholar

38. Turroni F, Foroni E, Pizzetti P, Giubellini V, Ribbera A, Merusi P, et al. Exploring the diversity of the bifidobacterial population in the human intestinal tract. Appl Environ Microbiol 2009;75(6):1534-45. doi: 10.1128/AEM.02216-08.10.1128/AEM.02216-08265544119168652 Search in Google Scholar

39. Richardson JB, Dancy BCR, Horton CL, Lee YS, Madejczyk MS, Xu ZZ, et al. Exposure to toxic metals triggers unique responses from the rat gut microbiota. Sci Rep 2018;8(1):6578. doi: 10.1038/s41598-018-24931-w.10.1038/s41598-018-24931-w591990329700420 Search in Google Scholar

40. Lusi EA, Santino I, Petrucca A, Zollo V, Magri F, O’Shea D, et al. The human nickel microbiome and its relationship to allergy and overweight in women. bioRxiv 2019;546739. doi: 10.1101/546739.10.1101/546739 Search in Google Scholar

41. Li X, Brejnrod AD, Ernst M, Rykær M, Herschend J, Olsen NMC, et al. Heavy metal exposure causes changes in the metabolic health-associated gut microbiome and metabolites. Environ Int 2019;126:454-67. doi: 10.1016/j.envint.2019.02.048.10.1016/j.envint.2019.02.04830844581 Search in Google Scholar

42. Lu K, Abo RP, Schlieper KA, Graffam ME, Levine S, Wishnok JS, et al. Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis. Environ Health Perspect 2014;122(3):284-91. doi: 10.1289/ehp.1307429.10.1289/ehp.1307429394804024413286 Search in Google Scholar

43. Zhang S, Jin Y, Zeng Z, Liu Z, Fu Z. Subchronic exposure of mice to cadmium perturbs their hepatic energy metabolism and gut microbiome. Chem Res Toxicol 2015;28(10):2000-9. doi: 10.1021/acs.chemrestox.5b00237.10.1021/acs.chemrestox.5b0023726352046 Search in Google Scholar

44. Liu Y, Li Y, Liu K, Shen J. Exposing to cadmium stress cause profound toxic effect on microbiota of the mice intestinal tract. PLoS One 2014;9(2):e85323. doi: 10.1371/journal.pone.0085323.10.1371/journal.pone.0085323391191024498261 Search in Google Scholar

45. Wu B, Cui H, Peng X, Pan K, Fang J, Zuo Z, et al. Toxicological effects of dietary nickel chloride on intestinal microbiota. Ecotoxicol Environ Saf 2014;109:70-6. doi: 10.1016/j.ecoenv.2014.08.002.10.1016/j.ecoenv.2014.08.00225164205 Search in Google Scholar

46. Li Y, Liu K, Shen J, Liu Y. Wheat bran intake can attenuate chronic cadmium toxicity in mice gut microbiota. Food Funct 2016;8(7):3524-30. doi: 10.1039/C6FO00233A.10.1039/C6FO00233A27425201 Search in Google Scholar

47. Breton J, Massart S, Vandamme P, De Brandt E, Pot B, Foligné B. Ecotoxicology inside the gut: impact of heavy metals on the mouse microbiome. BMC Pharmacol Toxicol 2013;14:62. doi: 10.1186/2050-6511-14-62.10.1186/2050-6511-14-62387468724325943 Search in Google Scholar

48. Zhou X, Li J, Sun JL. Oral nickel changes of intestinal microflora in mice. Curr Microbiol 2019;76(5):590-6. doi: 10.1007/s00284-019-01664-1.10.1007/s00284-019-01664-130859288 Search in Google Scholar

49. Rizzi A, Nucera E, Laterza L, Gaetani E, Valenza V, Corbo GM, et al. Irritable bowel syndrome and nickel allergy: what is the role of the low nickel diet? J Neurogastroenterol Motil 2017;23(1):101-8. doi: 10.5056/jnm16027.10.5056/jnm16027521664028049864 Search in Google Scholar

50. Di Gioacchino M, Ricciardi L, De Pità O, Minelli M, Patella V, Voltolini S, et al. Nickel oral hyposensitization in patients with systemic nickel allergy syndrome. Ann Med 2014;46(1):31-7. doi: 10.3109/07853890.2013.861158.10.3109/07853890.2013.861158467350924256166 Search in Google Scholar

51. Minelli M, Schiavino D, Musca F, Bruno ME, Falagiani P, Mistrello G, et al. Oral hyposensitization to nickel induces clinical improvement and a decrease in TH1 and TH2 cytokines in patients with systemic nickel allergy syndrome. Int J Immunopathol Pharmacol 2010;23(1):193-201. doi: 10.1177/039463201002300117.10.1177/03946320100230011720378005 Search in Google Scholar

52. Randazzo CL, Pino A, Ricciardi L, Romano C, Comito D, Arena E, et al. Probiotic supplementation in systemic nickel allergy syndrome patients: study of its effects on lactic acid bacteria population and on clinical symptoms. J Appl Microbiol 2015;118(1):202-11. doi: 10.1111/jam.12685.10.1111/jam.1268525363062 Search in Google Scholar

53. Camilo V, Sugiyama T, Touati E. Pathogenesis of Helicobacter pylori infection. Helicobacter 2017;22 Suppl 1:e12405. doi: 10.1111/hel.12405.10.1111/hel.1240528891130 Search in Google Scholar

54. Drzymała-Czyż S, Kwiecień J, Pogorzelski A, Rachel M, Banasiewicz T, Pławski A, et al. Prevalence of Helicobacter pylori infection in patients with cystic fibrosis. J Cyst Fibros 2013;12(6):761-5. doi: 10.1016/j.jcf.2013.01.004.10.1016/j.jcf.2013.01.00423375733 Search in Google Scholar

55. Benoit SL, Miller EF, Maier RJ. Helicobacter pylori stores nickel to aid its host colonization. Infect Immun 2013;81(2):580-4. doi: 10.1128/IAI.00858-12.10.1128/IAI.00858-12355381723230291 Search in Google Scholar

56. Campanale M, Nucera E, Ojetti V, Cesario V, Di Rienzo TA, D’Angelo G, et al. Nickel free-diet enhances the Helicobacter pylori eradication rate: a pilot study. Dig Dis Sci 2014;59(8):1851-5. doi: 10.1007/s10620-014-3060-3.10.1007/s10620-014-3060-324595654 Search in Google Scholar

57. Abenavoli L, Scarpellini E, Colica C, Boccuto L, Salehi B, Sharifi-Rad J, et al. Gut microbiota and obesity: A role for probiotics. Nutrients 2019;11(11):2690. doi: 10.3390/nu11112690.10.3390/nu11112690689345931703257 Search in Google Scholar

58. Lusi EA, Di Ciommo VM, Patrissi T, Guarascio P. High prevalence of nickel allergy in an overweight female population: a pilot observational analysis. PLoS One 2015;10(3):e0123265. doi: 10.1371/journal.pone.0123265.10.1371/journal.pone.0123265437905525822975 Search in Google Scholar

59. Cerdó T, García-Santos JA, Bermúdez MG, Campoy C. The role of probiotics and prebiotics in the prevention and treatment of obesity. Nutrients 2019;11(3):635. doi: 10.3390/nu11030635.10.3390/nu11030635647060830875987 Search in Google Scholar

60. Luoto R, Kalliomäki M, Laitinen K, Isolauri E. The impact of perinatal probiotic intervention on the development of overweight and obesity: follow-up study from birth to 10 years. Int J Obes (Lond) 2010;34(10):1531-7. doi: 10.1038/ijo.2010.50.10.1038/ijo.2010.5020231842 Search in Google Scholar

61. Sanchis-Chordà J, Del Pulgar EMG, Carrasco-Luna J, Benítez-Páez A, Sanz Y, Codoñer-Franch P. Bifidobacterium pseudocatenulatum CECT 7765 supplementation improves inflammatory status in insulin-resistant obese children. Eur J Nutr 2019;58(7):2789-800. doi: 10.1007/s00394-018-1828-5.10.1007/s00394-018-1828-530251018 Search in Google Scholar

62. Jung S, Lee YJ, Kim M, Kim M, Kwak JH, Lee JW, et al. Supplementation with two probiotic strains, Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032, reduced body adiposity and Lp-PLA2 activity in overweight subjects. J Funct Foods 2015;19:744-52. doi: 10.1016/j.jff.2015.10.006.10.1016/j.jff.2015.10.006 Search in Google Scholar

63. Gomes AC, de Sousa RG, Botelho PB, Gomes TL, Prada PO, Mota JF. The additional effects of a probiotic mix on abdominal adiposity and anti-oxidant status: A double-blind, randomized trial. Obesity (Silver Spring) 2017;25(1):30-8. doi: 10.1002/oby.21671.10.1002/oby.2167128008750 Search in Google Scholar

64. Watanabe M, Masieri S, Costantini D, Tozzi R, De Giorgi F, Gangitano E, et al. Overweight and obese patients with nickel allergy have a worse metabolic profile compared to weight matched non-allergic individuals. PLoS One 2018;13(8):e0202683. doi: 10.1371/journal.pone.0202683.10.1371/journal.pone.0202683611267130153310 Search in Google Scholar

eISSN:
2719-6313
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Medizin, Vorklinische Medizin, Grundlagenmedizin, andere, Klinische Medizin, Chirurgie, Öffentliches Gesundheitswesen