Uneingeschränkter Zugang

Pharmacological Characteristics Analysis of Two Molecular Structures

 und    | 28. März 2017

Zitieren

Introduction

It’s revealed by drug testing from the early research that the physico-chemical and pharmacological properties of drugs are closely related to their molecular structures. It raised much attention from the theoretical researchers, and until now, many topological indices are defined as useful as numerical parameters of drug structures which play an important role on understanding the properties of drugs.

In theoretical pharmacy model, a molecular structure of each drug is denoted as a molecular graph G (each atom is expressed as a vertex and each chemical bound is represented as an edge), then a topological index can be regarded as a score function f : G → ℝ+ which maps each molecular graph to a read positive number. In the past four decades, many indices are introduced by scholars from the engineering application prospects, such as Zagreb index, Wiener index, sum connectivity index, Gutman index and harmonic index which reflect several structural characteristics of molecules and drugs. There were many contributions to report these degree-based and distance-based indices of special molecular structures (See Farahani et al. [1], Jamil et al. [2], Gao et al. [37] and Gao and Wang [810] for more details). The notation and terminology that were used but undefined in this paper can be found in [11].

Now, we present some important indices which will be computed in the next section. The Shultz polynomial is denoted as

Sc(G,x)=Σ{u,v}V(G)(d(u)+d(v))xd(u,v).$$\begin{array}{} \displaystyle Sc(G,x) = \mathop \Sigma \limits_{\{ u,v\} \subseteq V(G)} (d(u) + d(v)){x^{d(u,v)}}. \end{array}$$

The additively weighted Harary index (also called, reciprocal degree distance) is defined as

HA(G)=Σ{u,v}V(G)d(u)+d(v)d(u,v).$$\begin{array}{} \displaystyle {H_A}(G) = \mathop \Sigma \limits_{\{ u,v\} \subseteq V(G)} \frac{{d(u) + d(v)}}{{d(u,v)}}. \end{array}$$

As the extension, the generalized degree distance is denoted as

Hλ(G)=Σ{u,v}V(G)(d(u)+d(v))dλ(u,v).$$\begin{array}{} \displaystyle {H_\lambda }(G) = \mathop \Sigma \limits_{\{ u,v\} \subseteq V(G)} (d(u) + d(v)){d^\lambda }(u,v). \end{array}$$

And, the corresponding polynomial can be stated as

Hλ(G,x)=Σ{u,v}V(G)(d(u)+d(v))dλ(u,v).$$\begin{array}{} \displaystyle {H_\lambda }(G,x) = \mathop \Sigma \limits_{\{ u,v\} \subseteq V(G)} (d(u) + d(v)){d^{{\lambda _{(u,v)}}}}. \end{array}$$

Some results on above indices and polynomials can refer to Alizadeh et al. [12], Sedlar [13], Pourfaraj and Ghorbani [14], Pattabiraman and Vijayaragavan [15], and Hamzeh et al. [16] and [17].

Let d(v) be the degree of vertex v, and ec(v) be the eccentricity of vertex v which is denoted as the largest distance between v and any other vertex in molecular graph G. The first atom-bond connectivity index (ABC index) is defined by Estrada et al. [18] which is stated as

ABC(G)=ΣuvE(G)d(u)+d(v)2d(u)d(v).$$\begin{array}{} \displaystyle ABC(G) = \mathop \Sigma \limits_{uv \in E(G)} \sqrt {\frac{{d(u) + d(v) - 2}}{{d(u)d(v)}}} . \end{array}$$

Then, the eccentricity version atom bond connectivity index (called the fifth ABC index) is denoted as

ABC5(G)=ΣuvE(G)ec(u)+ec(v)2ec(u)ec(v).$$\begin{array}{} \displaystyle AB{C_5}(G) = \mathop \Sigma \limits_{uv \in E(G)} \sqrt {\frac{{ec(u) + ec(v) - 2}}{{ec(u)ec(v)}}} . \end{array}$$

The first geometric-arithmetic index (GA index) introduced by Vukičević and Furtula [19] which can be formulated as

GA(G)=ΣuvE(G)2d(u)d(v)d(u)+d(v).$$\begin{array}{} \displaystyle GA(G) = \mathop \Sigma \limits_{uv \in E(G)} \frac{{2\sqrt {d(u)d(v)} }}{{d(u) + d(v)}}. \end{array}$$

Several contributions on geometric-arithmetic index can be found in Zhou et al. [20], Rodríguez and Sigarreta [21], [22] and [23], Husin et al. [24], Bahrami and Alaeiyan [?], Sigarreta [26], Divnic et al. [27], Das et al. [28], Mahmiani et al. [29], Fath-Tabar et al. [30] and [31], Das et al. [32], Gutman and Furtula [33], Furtula and Gutman [34], and Shabani et al. [35]. The the eccentricity version geometric-arithmetic index (called the fourth GA index) is defined by Lee et al. [36] which can be expressed as

GA4(G)=ΣuvE(G)2ec(u)ec(v)ec(u)+ec(v).$$\begin{array}{} \displaystyle G{A_4}(G) = \mathop \Sigma \limits_{uv \in E(G)} \frac{{2\sqrt {ec(u)ec(v)} }}{{ec(u) + ec(v)}}. \end{array}$$

Furthermore, the first and the second multiplicative version of eccentricity index are described as

Π1*(G)=ΠuvE(G)(ec(u)+ec(v))$$\begin{array}{} \displaystyle {\rm{\Pi }}_1^*(G) = {{\rm{\Pi }}_{uv \in E(G)}}(ec(u) + ec(v)) \end{array}$$

and

Π2*(G)=ΠuvE(G)(ec(u)+ec(v)),$$\begin{array}{} \displaystyle {\rm{\Pi }}_2^*(G) = {{\rm{\Pi }}_{uv \in E(G)}}(ec(u) + ec(v)), \end{array}$$

respectively. Moreover, as related polynomials, the fourth and sixth Zagreb polynomials are defined as

Zg4(G,x)=ΣuvE(G)xec(u)+ec(v)$$\begin{array}{} \displaystyle {Z_{{g_4}}}(G,x) = \mathop \Sigma \limits_{uv \in E(G)} {x^{ec(u) + ec(v)}} \end{array}$$

and

Zg6(G,x)=ΣuvE(G)xec(u)ec(v),$$\begin{array}{} \displaystyle {Z_{{g_6}}}(G,x) = \mathop \Sigma \limits_{uv \in E(G)} {x^{ec(u)ec(v)}}, \end{array}$$

respectively.

Although there have been several works in topological indices of material structures, the research on topological indices for certain special drug structures is still largely limited. Furthermore, as a widespread and critical drug structure, dendrimer and starlike molecular graphs are widely used in medical science and frequently appears in new drug structures (see Kobeissi and Mollard [37], Omidi and Tajbakhsh [38], Omidi and Vatandoost [39], Betancur et al. [40] and Farooq et al. [41] for more details). It inspires us to obtain the exact expressions of some special topological indices for important classes of starlike molecular graphs and dendrimer.

The main aim of this paper is to study the generalized degree distance of starlike tree and eccentricity related indices of hetrofunctional dendrimer.

Main results and proofs

The purpose of this section is to present our main results and detail proofs.

Indices study of starlike tree

Let D(G) = (d1, d2, ··· , dn) be the degree sequence of the graph G with d1d2 ··· dn, where di denotes the degree of the i-th vertex in G. Moreover, D(G)=(d1a1,d2a2,,dtat)$\begin{array}{} \displaystyle D(G) = (d_1^{{a_1}},d_2^{{a_2}}, \cdot \cdot \cdot ,d_t^{{a_t}}) \end{array}$ implies that G has ai vertices with degree di for i ∊ {1, 2, ··· ,t}.

A double star Sp,q (the detailed structure can refer to Figure 1(a)) is a tree which is yielded from K1,p and K1,q−1 by identifying a pendent vertex of K1,p with the center of K1,q−1, where 1 < pq. Hence, for a double star Sp,q with order n, we get p + q = n and pn2$\begin{array}{} \displaystyle p \le \frac{n}{2} \end{array}$. Furthermore, if p=n2$\begin{array}{} \displaystyle p = \frac{n}{2} \end{array}$ and q=n2$\begin{array}{} \displaystyle q = \frac{n}{2} \end{array}$, then Sp,q is called a balanced double star.

Fig. 1

Two classes of starlike tree

Let (c1, c2, ··· , cd) be a partition of order n. The starlike tree can be constructed using the following method:

(i) Let S1, S2, ··· , Sd be the stars and v1, v2, ··· ,vd be their center vertices. Set |E(S1)| = c1 1, |E(S2)| = c2 1, ··· ,|E(Sd)| = cd 1;

(ii) Add a vertex v0 and then adjacent to the center vertices v1, v2, ··· ,vd of S1, S2, ··· ,Sd respectively.

In this way, we can deduce a tree T with diameter at most 4, and dT (v1) = c1, dT (v2) = c2, ···, dT (vd) = cd respectively. Moreover, we infer |V (T )| = n + 1, E(T)=Σi=1dci=n$\begin{array}{} \displaystyle E(T) = \Sigma _{i = 1}^d{c_i} = n \end{array}$. We denote this molecular structure as S(c1, c2, ··· ,cd) shown in Figure 1(b). Now, our main result in this part is stated as follows.

Theorem 1.

Let S(c1, c2, ··· ,cd) be a starlike tree described above. Then, we have

Hλ(S(c1,c2,,cd))=Σi=1d(ci2+ci)+d2d+(Σi=1d(2(ci12)+(d1)ci)+(d+1)(nd))2λ+(Σi=1d(ci+1)Σi=1d(ci1)Σi=1d(ci21))3λ+2((nd2)Σi=1d(ci12))4λ.$$\begin{array}{} \displaystyle \begin{array}{*{20}{c}} {} \hfill & {{H_\lambda }(S({c_1},{c_2}, \cdot \cdot \cdot ,{c_d}))} \hfill \\ = \hfill & {\mathop \Sigma\limits_{i = 1}^d (c_i^2 + {c_i}) + {d^2} - d + (\mathop \Sigma\limits_{i = 1}^d (2(\begin{array}{*{20}{c}} {{c_i} - 1} \\ 2 \\ \end{array}) + (d - 1){c_i}) + (d + 1)(n - d)) \cdot {2^\lambda }} \hfill \\ {} \hfill & { + (\mathop \Sigma\limits_{i = 1}^d ({c_i} + 1)\mathop \Sigma\limits_{i = 1}^d ({c_i} - 1) - \mathop \Sigma\limits_{i = 1}^d (c_i^2 - 1)) \cdot {3^\lambda } + 2((\begin{array}{*{20}{c}} {n - d} \\ 2 \\ \end{array}) - \mathop \Sigma\limits_{i = 1}^d (\begin{array}{*{20}{c}} {{c_i} - 1} \\ 2 \\ \end{array})) \cdot {4^\lambda }.} \hfill \\ \end{array} \end{array}$$

Proof.

For any pairs of vertices (x, y) ⊆ V (S(c1, c2, ··· ,cd)), we get d(x, y) ≤ 4. Thus, we have d(x, y) = k where k ∊ {1, 2, 3, 4}. The vertex set of S(c1, c2, ··· ,cd) can be divided into three classes: (1) the center v0; (2) v1, ··· , vd; (3) the leaves w1, w2, ··· , wn−d. The following discussion can be divided into four parts.

Since |E(S(c1, c2, ··· ,cd))| = n, there are n pairs with d(x, y) = 1, and the total contribution of this part to generalized degree distance is

Σi=1d(ci+1)(ci1)+Σi=1d(ci+d)=Σi=1d(ci2+ci)+d2d.$$\begin{array}{} \displaystyle \mathop \Sigma\limits_{i = 1}^d ({c_i} + 1)({c_i} - 1) + \mathop \Sigma\limits_{i = 1}^d ({c_i} + d) = \mathop \Sigma\limits_{i = 1}^d (c_i^2 + {c_i}) + {d^2} - d. \end{array}$$

Vertices x and y which in pairs (x, y) = (v0, wi), (vi, vj) or (wi, wj) satisfy d(x, y) = 2. The total contribution of this part to generalized degree distance is

(Σi=1d(2(ci12)+(d1)ci)+(d+1)(nd))2λ.$$\begin{array}{} \displaystyle (\mathop \Sigma\limits_{i = 1}^d (2(\begin{array}{*{20}{c}} {{c_i} - 1} \\ 2 \\ \end{array}) + (d - 1){c_i}) + (d + 1)(n - d)) \cdot {2^\lambda }. \end{array}$$

We get d(vi, wj) = 3 where i ≠ = j, and the total contribution of this part to generalized degree distance is

(Σi=1d(ci+1)Σi=1d(ci1)Σi=1d(ci21))3λ.$$\begin{array}{} \displaystyle (\mathop \Sigma\limits_{i = 1}^d ({c_i} + 1)\mathop \Sigma\limits_{i = 1}^d ({c_i} - 1) - \mathop \Sigma\limits_{i = 1}^d (c_i^2 - 1)) \cdot {3^\lambda }. \end{array}$$

We get d(wi, wj) = 4 if and only if wi and wj are not the neighbors of the same vertex vk (1 ≤ kd). The total contribution of this part to generalized degree distance is

2((nd2)Σi=1d(ci12))4λ.$$\begin{array}{} \displaystyle 2((\begin{array}{*{20}{c}} {n - d} \\ 2 \\ \end{array}) - \mathop \Sigma\limits_{i = 1}^d (\begin{array}{*{20}{c}} {{c_i} - 1} \\ 2 \\ \end{array})) \cdot {4^\lambda }. \end{array}$$

By summing up the above results, we get the desired result.

In view of Theorem 1, we deduce the following corollaries.

Corollary 1.

The Shultz polynomial of starlike tree S(c1, c2, ··· , cd) is

Sc(c1,c2,,cd),x)=(Σi=1d(ci2+ci)+d2d)x+(Σi=1d(2(ci12)+(d1)ci)+(d+1)(nd))x2+(Σi=1d(ci+1)Σi=1d(c11)Σi=1d(ci21))x3+2((nd2)Σi=1d(ci12))x4.$$\begin{array}{l} \displaystyle \begin{array}{*{20}{l}} {} & {Sc({c_1},{c_2}, \cdot \cdot \cdot ,{c_d}),x)} \\ = & {(\mathop \Sigma\limits_{i = 1}^d (c_i^2 + {c_i}) + {d^2} - d)x + (\mathop \Sigma\limits_{i = 1}^d (2(\begin{array}{*{20}{c}} {{c_i} - 1} \\ 2 \\ \end{array}) + (d - 1){c_i}) + (d + 1)(n - d)){x^2}} \\ {} & { + (\mathop \Sigma\limits_{i = 1}^d ({c_i} + 1)\mathop \Sigma\limits_{i = 1}^d ({c_{1 - 1}}) - \mathop \Sigma\limits_{i = 1}^d (c_i^2 - 1)){x^3} + 2((\begin{array}{*{20}{c}} {n - d} \\ 2 \\ \end{array}) - \mathop \Sigma\limits_{i = 1}^d (\begin{array}{*{20}{c}} {{c_i} - 1} \\ 2 \\ \end{array})){x^4}.} \\ \end{array} \end{array}$$

Corollary 2.

The additively weighted Harary index (reciprocal degree distance) of starlike tree S(c1, c2, ··· , cd) is

HA(S(c1,c2,,cd))=(Σi=1d(ci2+ci)+d2d)+Σi=1d(ci12)+(d1)ci)+(d+1)(nd)+(nd2)2+Σi=1d(ci+1)Σi=1d(ci1)Σi=1d(ci21)3.$$\begin{array}{} \displaystyle \begin{array}{*{20}{l}} {} & {{H_A}(S({c_1},{c_2}, \cdot \cdot \cdot ,{c_d}))} \\ = & {(\mathop \Sigma\limits_{i = 1}^d (c_i^2 + {c_i}) + {d^2} - d) + \frac{{\Sigma _{i = 1}^d(\begin{array}{*{20}{c}} {{c_i} - 1} \\ 2 \\ \end{array}) + (d - 1){c_i}) + (d + 1)(n - d) + (\begin{array}{*{20}{c}} {n - d} \\ 2 \\ \end{array})}}{2}} \\ {} & { + \frac{{\Sigma _{i = 1}^d({c_i} + 1)\Sigma _{i = 1}^d({c_i} - 1) - \Sigma _{i = 1}^d(c_i^2 - 1)}}{3}.} \\ \end{array} \end{array}$$

Corollary 3.

The generalized degree distance polynomial of starlike tree S(c1, c2, ··· ,cd) is

Hλ(S(c1,c2,,cd),x)=(Σi=1d(ci2+ci)+d2d)x+(Σi=1d(2(ci12)+(d1)ci)+(d+1)(nd))x2λ+(Σi=1d(ci+1)Σi=1d(ci1)Σi=1d(ci21))x3λ+2((nd2)Σi1d(ci12))x4λ.$$\begin{array}{} \displaystyle \begin{array}{*{20}{l}} {} & {{H_\lambda }(S({c_1},{c_2}, \cdot \cdot \cdot ,{c_d}),x)} \\ = & {(\mathop \Sigma\limits_{i = 1}^d (c_i^2 + {c_i}) + {d^2} - d)x + (\mathop \Sigma\limits_{i = 1}^d (2(\begin{array}{*{20}{c}} {{c_i} - 1} \\ 2 \\ \end{array}) + (d - 1){c_i}) + (d + 1)(n - d)){x^{{2^\lambda }}}} \\ {} & { + (\mathop \Sigma\limits_{i = 1}^d ({c_i} + 1)\mathop \Sigma\limits_{i = 1}^d ({c_i} - 1) - \mathop \Sigma\limits_{i = 1}^d (c_i^2 - 1)){x^{{3^\lambda }}} + 2((\begin{array}{*{20}{c}} {n - d} \\ 2 \\ \end{array}) - \mathop \Sigma\limits_d^{i - 1} (\begin{array}{*{20}{c}} {{c_i} - 1} \\ 2 \\ \end{array})){x^{{4^\lambda }}}.} \\ \end{array} \end{array}$$

Eccentricity related indices of hetrofunctional dendrimer

As macromolecules, hetrofunctional dendrimers D[n] (here n is denoted as the total stage number) have been widely used in pharmacy and medicine. As an example, the structure of D[6] is presented in Figure 2, and the different growth stages are depicted in Figure 3 and Figure 4. Obviously, we have |V(D[n])|=|E(D[n])|={40×2t38,if n=2t24×2t+138,if n=2t+1$\begin{array}{} \displaystyle \left| {V\left( {D\left[ n \right]} \right)} \right| = |E\left( {D\left[ n \right]} \right)| = \{ \begin{array}{*{20}{c}} {40 \times {2^t} - 38,}&{{\rm{if }}n = 2t}\\ {24 \times {2^{t + 1}} - 38,}&{{\rm{if }}n = 2t + 1} \end{array} \end{array}$, where t is a positive integer.

Fig. 2

The structure of D[6]

Fig. 3

The core of D[1] and D[2]

Fig. 4

One branch of D[3], D[4] and D[5]

Our proof follows the technology in Farooq et al. [41], and the whole results can be divided into two parts according to the parity of n.

Theorem 2.

If n = 1, then

GA4(D[1])=2+1659+43011+44213,ABC5(D[1])=32+275+2310+21142,Π1*(D[1])=8294112132,Π2*(D[1])=162204302422,Zg4(D[1])=2x8+4x9+2x11+2x13,Zg6(D[1])=2x16+4x20+2x30+2x42.$$\begin{array}{} \displaystyle \begin{array}{*{20}{c}} {G{A_4}(D[1]) = 2 + \frac{{16\sqrt 5 }}{9} + \frac{{4\sqrt {30} }}{{11}} + \frac{{4\sqrt {42} }}{{13}},} \\ {AB{C_5}(D[1]) = \sqrt {\frac{3}{2}} + 2\sqrt {\frac{7}{5}} + 2\sqrt {\frac{3}{{10}}} + 2\sqrt {\frac{{11}}{{42}}} ,} \\ {\Pi _1^*(D[1]) = {8^2}{9^4}{{11}^2}{{13}^2},} \\ {\Pi _2^*(D[1]) = {{16}^2}{{20}^4}{{30}^2}{{42}^2},} \\ {Z{g_4}(D[1]) = 2{x^8} + 4{x^9} + 2{x^{11}} + 2{x^{13}},} \\ {Z{g_6}(D[1]) = 2{x^{16}} + 4{x^{20}} + 2{x^{30}} + 2{x^{42}}.} \\ \end{array} \end{array}$$

If n = 2, then

GA4(D[2])=2+163323+83925+418227+821029+321531+641733+243435+243837+169539+1610541,$$\begin{array}{} \displaystyle \begin{array}{*{20}{c}} {G{A_4}(D[2]) = } & {2 + \frac{{16\sqrt {33} }}{{23}} + \frac{{8\sqrt {39} }}{{25}} + \frac{{4\sqrt {182} }}{{27}} + \frac{{8\sqrt {210} }}{{29}} + \frac{{32\sqrt {15} }}{{31}}} \\ {} & { + \frac{{64\sqrt {17} }}{{33}} + \frac{{24\sqrt {34} }}{{35}} + \frac{{24\sqrt {38} }}{{37}} + \frac{{16\sqrt {95} }}{{39}} + \frac{{16\sqrt {105} }}{{41}},} \\ \end{array} \end{array}$$

ABC5(D[2])=45121+4744+223156+225182+4970+2915+23117+433334+433538+23795+239105,$$\begin{array}{} \displaystyle \begin{array}{*{20}{c}} {AB{C_5}(D[2]) = } & {4\sqrt {\frac{5}{{121}}} + 4\sqrt {\frac{7}{{44}}} + 2\sqrt {\frac{{23}}{{156}}} + 2\sqrt {\frac{{25}}{{182}}} + 4\sqrt {\frac{9}{{70}}} + \sqrt {\frac{{29}}{{15}}} } \\ {} & { + 2\sqrt {\frac{{31}}{{17}}} + \frac{4}{3}\sqrt {\frac{{33}}{{34}}} + \frac{4}{3}\sqrt {\frac{{35}}{{38}}} + 2\sqrt {\frac{{37}}{{95}}} + 2\sqrt {\frac{{39}}{{105}}} ,} \\ \end{array} \end{array}$$

Π1*(D[2])=222234252272294314338354374394414,Π2*(D[2])=12121324156218222104240427283064342438044204,Zg4(D[2])=2x22+4x23+2x25+2x27+4x29+4x31+8x33+4x35+4x37+4x39+4x41,$$\begin{array}{} \displaystyle \begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} {{\rm{\Pi }}_1^*(D[2]) = {{22}^2}{{23}^4}{{25}^2}{{27}^2}{{29}^4}{{31}^4}{{33}^8}{{35}^4}{{37}^4}{{39}^4}{{41}^4},} \\ {{\rm{\Pi }}_2^*(D[2]) = {{121}^2}{{132}^4}{{156}^2}{{182}^2}{{210}^4}{{240}^4}{{272}^8}{{306}^4}{{342}^4}{{380}^4}{{420}^4},} \\ \end{array}} \\ {{{\begin{array}{*{20}{c}} {Zg} \\ \end{array}}_4}(D[2]) = 2{x^{22}} + 4{x^{23}} + 2{x^{25}} + 2{x^{27}} + 4{x^{29}} + 4{x^{31}} + 8{x^{33}} + 4{x^{35}} + 4{x^{37}} + 4{x^{39}} + 4{x^{41}},} \\ \end{array} \end{array}$$

Zg6(D[2])=2x121+4x132+2x156+2x182+4x210+4x240+8x272+4x306+4x342+4x380+4x420.$$\begin{array}{} \displaystyle \begin{array}{*{20}{c}} {Z{g_6}(D[2]) = } & {2{x^{121}} + 4{x^{132}} + 2{x^{156}} + 2{x^{182}} + 4{x^{210}} + 4{x^{240}} + 8{x^{272}} + 4{x^{306}} + 4{x^{342}} + 4{x^{380}} + 4{x^{420}}.} \\ \end{array} \end{array}$$

If n = 3, then

GA4(D[3])=2+321530+161733+123435+243837+169539+1610541+846243+850645+1613247+80649+402651+247853+482155+1620357,$$\begin{array}{} \displaystyle \begin{array}{*{20}{c}} {G{A_4}(D[3]) = } & {2 + \frac{{32\sqrt {15} }}{{30}} + \frac{{16\sqrt {17} }}{{33}} + \frac{{12\sqrt {34} }}{{35}} + \frac{{24\sqrt {38} }}{{37}} + \frac{{16\sqrt {95} }}{{39}} + \frac{{16\sqrt {105} }}{{41}} + \frac{{8\sqrt {462} }}{{43}}} \\ {} & { + \frac{{8\sqrt {506} }}{{45}} + \frac{{16\sqrt {132} }}{{47}} + \frac{{80\sqrt 6 }}{{49}} + \frac{{40\sqrt {26} }}{{51}} + \frac{{24\sqrt {78} }}{{53}} + \frac{{48\sqrt {21} }}{{55}} + \frac{{16\sqrt {203} }}{{57}},} \\ \end{array} \end{array}$$

ABC5(D[3])=4157+2915+123117+211102+433538+23795+21335+441462+443506+21346+25476+454926+431726+235321+255203,$$\begin{array}{} \displaystyle \begin{array}{*{20}{c}} {AB{C_5}(D[3]) = } & {\frac{4}{{15}}\sqrt 7 + \sqrt {\frac{{29}}{{15}}} + \frac{1}{2}\sqrt {\frac{{31}}{{17}}} + 2\sqrt {\frac{{11}}{{102}}} + \frac{4}{3}\sqrt {\frac{{35}}{{38}}} + 2\sqrt {\frac{{37}}{{95}}} + 2\sqrt {\frac{{13}}{{35}}} + 4\sqrt {\frac{{41}}{{462}}} } \\ {} & { + 4\sqrt {\frac{{43}}{{506}}} + 2\sqrt {\frac{{13}}{{46}}} + \frac{2}{5}\sqrt {\frac{{47}}{6}} + \frac{4}{5}\sqrt {\frac{{49}}{{26}}} + \frac{4}{3}\sqrt {\frac{{17}}{{26}}} + \frac{2}{3}\sqrt {\frac{{53}}{{21}}} + 2\sqrt {\frac{{55}}{{203}},} } \\ \end{array} \end{array}$$

Π1*(D[3])=302314333352374394414434454474494514534554574,$$\begin{array}{} \displaystyle \begin{array}{*{20}{c}} {{\rm{\Pi }}_1^*(D[3]) = } & {{{30}^2}{{31}^4}{{33}^3}{{35}^2}{{37}^4}{{39}^4}{{41}^4}{{43}^4}{{45}^4}{{47}^4}{{49}^4}{{51}^4}{{53}^4}{{55}^4}{{57}^4},} \\ \end{array} \end{array}$$

Π2*(D[3])=225224042722306234243804420446245064552460046504702475648124,$$\begin{array}{} \displaystyle \begin{array}{*{20}{c}} {{\rm{\Pi }}_2^*(D[3]) = } & {{{225}^2}{{240}^4}{{272}^2}{{306}^2}{{342}^4}{{380}^4}{{420}^4}{{462}^4}{{506}^4}{{552}^4}{{600}^4}{{650}^4}{{702}^4}{{756}^4}{{812}^4},} \\ \end{array} \end{array}$$

Zg4(D[3])=2x30+4x31+2x33+2x35+4x37+4x39+4x41+4x43+4x45+4x47+4x49+4x51+4x53+4x55+4x57,$$\begin{array}{} \displaystyle Z{g_4}\begin{array}{*{20}{c}} {(D[3]) = } & {2{x^{30}} + 4{x^{31}} + 2{x^{33}} + 2{x^{35}} + 4{x^{37}} + 4{x^{39}} + 4{x^{41}} + 4{x^{43}} + 4{x^{45}} + 4{x^{47}} + 4{x^{49}} + 4{x^{51}} + 4{x^{53}} + 4{x^{55}} + 4{x^{57}},} \\ \end{array} \end{array}$$

Zg6(D[3])=2x225+4x240+2x272+2x306+4x342+4x420+4x462+4x506+4x552+4x600+4x650+4x702+4x756+4x812.$$\begin{array}{} \displaystyle \begin{array}{*{20}{c}} {Z{g_6}(D[3]) = } & {2{x^{225}} + 4{x^{240}} + 2{x^{272}} + 2{x^{306}} + 4{x^{342}} + 4{x^{420}} + 4{x^{462}} + 4{x^{506}} + 4{x^{552}}} \\ {} & { + 4{x^{600}} + 4{x^{650}} + 4{x^{702}} + 4{x^{756}} + 4{x^{812}}.} \\ \end{array} \end{array}$$

If n ≥ 4 and n ≡ 0(mod2), then

GA4(D[n])=2+8(11t)(11t+1)22t+1+4(11t+1)(11t+2)22t+3+4(11t+2)(11t+3)22t+5+8(11t+3)(11t+4)22t+7+i=1t1(2i+2(11t+11i7)(11t+11i6)22t+22i13+2i+3(11t+11i6)(11t+11i5)22t+22i11+2i+2(11t+11i5)(11t+11i4)22t+22i9+2i+2(11t+11i4)(11t+11i3)22t+22i7+2i+2(11t+11i3)(11t+11i2)22t+22i5+2i+2(11t+11i2)(11t+11i1)22t+22i3+2i+2(11t+11i1)(11t+11i)22t+22i1+2i+2(11t+11i)(11t+11i+1)22t+22i+1+2i+2(11t+11i+1)(11t+11i+2)22t+22i+3+2i+2(11t+11i+2)(11t+11i+3)22t+22i+5+2i+2(11t+11i+3)(11t+11i+4)22t+22i+7)+2t+2(22t7)(22t6)44t13+2t+3(22t6)(22t5)44t11+2t+2(22t5)(22t4)44t9+2t+2(22t4)(22t3)44t7+2t+2(22t3)(22t2)44t5+2t+2(22t2)(22t1)44t3,$$\begin{array}{} \displaystyle \begin{array}{l} G{A_4}(D[n]) = 2 + \frac{{8\sqrt {(11t) \cdot (11t + 1)} }}{{22t + 1}} + \frac{{4\sqrt {(11t + 1) \cdot (11t + 2)} }}{{22t + 3}}\\ + \frac{{4\sqrt {(11t + 2) \cdot (11t + 3)} }}{{22t + 5}} + \frac{{8\sqrt {(11t + 3) \cdot (11t + 4)} }}{{22t + 7}}\\ + \sum\limits_{i = 1}^{t - 1} ( {2^{i + 2}}\frac{{\sqrt {(11t + 11i - 7) \cdot (11t + 11i - 6)} }}{{22t + 22i - 13}} + {2^{i + 3}}\frac{{\sqrt {(11t + 11i - 6) \cdot (11t + 11i - 5)} }}{{22t + 22i - 11}}\\ + {2^{i + 2}}\frac{{\sqrt {(11t + 11i - 5) \cdot (11t + 11i - 4)} }}{{22t + 22i - 9}} + {2^{i + 2}}\frac{{\sqrt {(11t + 11i - 4) \cdot (11t + 11i - 3)} }}{{22t + 22i - 7}}\\ + {2^{i + 2}}\frac{{\sqrt {(11t + 11i - 3) \cdot (11t + 11i - 2)} }}{{22t + 22i - 5}} + {2^{i + 2}}\frac{{\sqrt {(11t + 11i - 2) \cdot (11t + 11i - 1)} }}{{22t + 22i - 3}}\\ + {2^{i + 2}}\frac{{\sqrt {(11t + 11i - 1) \cdot (11t + 11i)} }}{{22t + 22i - 1}} + {2^{i + 2}}\frac{{\sqrt {(11t + 11i) \cdot (11t + 11i + 1)} }}{{22t + 22i + 1}}\\ + {2^{i + 2}}\frac{{\sqrt {(11t + 11i + 1) \cdot (11t + 11i + 2)} }}{{22t + 22i + 3}} + {2^{i + 2}}\frac{{\sqrt {(11t + 11i + 2) \cdot (11t + 11i + 3)} }}{{22t + 22i + 5}}\\ + {2^{i + 2}}\frac{{\sqrt {(11t + 11i + 3) \cdot (11t + 11i + 4)} }}{{22t + 22i + 7}}) + {2^{t + 2}}\frac{{\sqrt {(22t - 7) \cdot (22t - 6)} }}{{44t - 13}}\\ + {2^{t + 3}}\frac{{\sqrt {(22t - 6) \cdot (22t - 5)} }}{{44t - 11}} + {2^{t + 2}}\frac{{\sqrt {(22t - 5) \cdot (22t - 4)} }}{{44t - 9}} + {2^{t + 2}}\frac{{\sqrt {(22t - 4) \cdot (22t - 3)} }}{{44t - 7}}\\ + {2^{t + 2}}\frac{{\sqrt {(22t - 3) \cdot (22t - 2)} }}{{44t - 5}} + {2^{t + 2}}\frac{{\sqrt {(22t - 2) \cdot (22t - 1)} }}{{44t - 3}}, \end{array} \end{array}$$

ABC5(D[n])=211t22t2+422t1(11t)(11t+1)+222t+1(11t+1)(11t+2)+222t+3(11t+2)(11t+3)+422t+5(11t+3)(11t+4)+Σi=1t1(2i+122t+22i15(11t+11i7)(11t+11i6)+2i+222t+22i13(11t+11i6)(11t+11i5)+2i+122t+22i11(11t+11i5)(11t+11i4)+2i+122t+22i9(11t+11i4)(11t+11i3)+2i+122t+22i7(11t+11i3)(11t+11i2)+2i+122t+22i5(11t+11i2)(11t+11i1)+2i+122t+22i3(11t+11i1)(11t+11i)+2i+122t+22i1(11t+11i)(11t+11i+1)+2i+122t+22i+1(11t+11i+1)(11t+11i+2)+2i+122t+22i+3(11t+11i+2)(11t+11i+3)+2i+122t+22i+5(11t+11i+3)(11t+11i+4)+2t+144t15(22t7)(22t6)+2t+244t13(22t6)(22t5)+2t+144t11(22t5)(22t4)+2i+144t9(22t4)(22t3)+2t+144t7(22t3)(22t2)+2t+144t5(22t2)(22t1),$$\begin{array}{} \displaystyle \begin{array}{l} AB{C_5}(D[n]) = \frac{2}{{11t}}\sqrt {22t - 2} + 4\sqrt {\frac{{22t - 1}}{{(11t) \cdot (11t + 1)}}} + 2\sqrt {\frac{{22t + 1}}{{(11t + 1) \cdot (11t + 2)}}} \\ + 2\sqrt {\frac{{22t + 3}}{{(11t + 2) \cdot (11t + 3)}}} + 4\sqrt {\frac{{22t + 5}}{{(11t + 3) \cdot (11t + 4)}}} \\ + \sum\limits_{i = 1}^{t - 1} ( {2^{i + 1}}\sqrt {\frac{{22t + 22i - 15}}{{(11t + 11i - 7) \cdot (11t + 11i - 6)}}} + {2^{i + 2}}\sqrt {\frac{{22t + 22i - 13}}{{(11t + 11i - 6) \cdot (11t + 11i - 5)}}} \\ + {2^{i + 1}}\sqrt {\frac{{22t + 22i - 11}}{{(11t + 11i - 5) \cdot (11t + 11i - 4)}}} + {2^{i + 1}}\sqrt {\frac{{22t + 22i - 9}}{{(11t + 11i - 4) \cdot (11t + 11i - 3)}}} \\ + {2^{i + 1}}\sqrt {\frac{{22t + 22i - 7}}{{(11t + 11i - 3) \cdot (11t + 11i - 2)}}} + {2^{i + 1}}\sqrt {\frac{{22t + 22i - 5}}{{(11t + 11i - 2) \cdot (11t + 11i - 1)}}} \\ + {2^{i + 1}}\sqrt {\frac{{22t + 22i - 3}}{{(11t + 11i - 1) \cdot (11t + 11i)}}} + {2^{i + 1}}\sqrt {\frac{{22t + 22i - 1}}{{(11t + 11i) \cdot (11t + 11i + 1)}}} \\ + {2^{i + 1}}\sqrt {\frac{{22t + 22i + 1}}{{(11t + 11i + 1) \cdot (11t + 11i + 2)}}} + {2^{i + 1}}\sqrt {\frac{{22t + 22i + 3}}{{(11t + 11i + 2) \cdot (11t + 11i + 3)}}} \\ + {2^{i + 1}}\sqrt {\frac{{22t + 22i + 5}}{{(11t + 11i + 3) \cdot (11t + 11i + 4)}}} ) + {2^{t + 1}}\sqrt {\frac{{44t - 15}}{{(22t - 7) \cdot (22t - 6)}}} \\ + {2^{t + 2}}\sqrt {\frac{{44t - 13}}{{(22t - 6) \cdot (22t - 5)}}} ) + {2^{t + 1}}\sqrt {\frac{{44t - 11}}{{(22t - 5) \cdot (22t - 4)}}} \\ + {2^{t + 1}}\sqrt {\frac{{44t - 9}}{{(22t - 4) \cdot (22t - 3)}}} + {2^{t + 1}}\sqrt {\frac{{44t - 7}}{{(22t - 3) \cdot (22t - 2)}}} \\ + {2^{t + 1}}\sqrt {\frac{{44t - 5}}{{(22t - 2) \cdot (22t - 1)}}} , \end{array} \end{array}$$

Π1*(D[n])=(22t)2(22t+1)4(22+3)2(22t+5)2(22+7)4Πi=1t1((22t+22i13)2i+1(22t+22i11)2i+2(22t+22i9)2i+1(22t+22i7)2i+1(22t+22i5)2i+1(22t+22i3)2i+1(22t+22i1)2i+1(22t+22i1)2i+1(22t+22i3)2i+1(22t+22i3)2i+1(22t+22i1)2i+1(22t+22i1)2i+1(22t+22i3)2i+1(22t+22i5)2i+1(22t+22i7)2i+1(44t13)2t+1(44t11)2t+2(44t9)2t+1(44t7)2t+1(44t5)2t+1(44t3)2t+1,$$\begin{array}{} \displaystyle \begin{array}{l} \Pi _1^*(D[n]) = {(22t)^2}{(22t + 1)^4}{(22t + 3)^2}{(22t + 5)^2}{(22t + 7)^4} \cdot \prod\limits_{i = 1}^{t - 1} {((} 22t + 22i - 13{)^{{2^{i + 1}}}}\\ {(22t + 22i - 11)^{{2^{i + 2}}}}{(22t + 22i - 9)^{{2^{i + 1}}}}{(22t + 22i - 7)^{{2^{i + 1}}}}{(22t + 22i - 5)^{{2^{i + 1}}}}\\ \cdot {(22t + 22i - 3)^{{2^{i + 1}}}}{(22t + 22i - 1)^{{2^{i + 1}}}}{(22t + 22i + 1)^{{2^{i + 1}}}}{(22t + 22i + 3)^{{2^{i + 1}}}}\\ \cdot {(22t + 22i + 5)^{{2^{i + 1}}}}{(22t + 22i + 7)^{{2^{i + 1}}}}){(44t - 13)^{{2^{t + 1}}}}{(44t - 11)^{{2^{t + 2}}}}{(44t - 9)^{{2^{t + 1}}}}\\ \cdot {(44t - 7)^{{2^{t + 1}}}}{(44t - 5)^{{2^{t + 1}}}}{(44t - 3)^{{2^{t + 1}}}}, \end{array} \end{array}$$

Π2*(D[n])=(11t)8(11t+1)6(11+2)4(11t+3)6(11t+4)4Πi=1t1((11t+11i7)2i+1(11t+11i6)32i+1(11t+11i5)32i+1(11t+11i4)2i+2(11t+11i3)2i+2(11t+11i2)2i+2(11t+11i1)2i+2(11t+11i)2i+2(11t+11i+1)2i+2(11t+11i2)2i+2(11t+11i+3)2i+2(11t+11i4)2i+1(22t7)2i+1(22t6)3.2i+1(22t5)3.2i+1(22t4)2i+2(22t3)2i+2(22t2)2i+2(22t1)2i+1,$$\begin{array}{} \displaystyle \begin{array}{l} \Pi _2^*(D[n]) = {(11t)^8}{(11t + 1)^6}{(11t + 2)^4}{(11t + 3)^6}{(11t + 4)^4} \cdot \prod\limits_{i = 1}^{t - 1} {((} 11t + 11i - 7{)^{{2^{i + 1}}}}\\ \cdot (11t + 11i - 6){)^{3 \cdot {2^{i + 1}}}}{(11t + 11i - 5)^{3 \cdot {2^{i + 1}}}}{(11t + 11i - 4)^{{2^{i + 2}}}}{(11t + 11i - 3)^{{2^{i + 2}}}}{(11t + 11i - 2)^{{2^{i + 2}}}}\\ \cdot {(11t + 11i - 1)^{{2^{i + 2}}}}{(11t + 11i)^{{2^{i + 2}}}}{(11t + 11i + 1)^{{2^{i + 2}}}}{(11t + 11i + 2)^{{2^{i + 2}}}}{(11t + 11i + 3)^{{2^{i + 2}}}}\\ \cdot {(11t + 11i + 4)^{{2^{i + 1}}}}){(22t - 7)^{{2^{t + 1}}}}{(22t - 6)^{3 \cdot {2^{t + 1}}}}{(22t - 5)^{3 \cdot {2^{t + 1}}}}{(22t - 4)^{{2^{t + 2}}}}{(22t - 3)^{{2^{t + 2}}}}\\ \cdot {(22t - 2)^{{2^{t + 2}}}}{(22t - 1)^{{2^{t + 1}}}}, \end{array} \end{array}$$

Zg4(D[n])=2x22t+4x22t+1+2x22t+3+2x22t+5+4x22t+7+Σi=1t1(2i+1x22t+22i13)+2i+2x22t+22i11+2i+1x22t+22i9+2i+1x22t+22i7+2i+1x22t+22i5+2i+1x22t+22i3+2i+1x22t+22i1+2i+1x22t+22i+1+2i+1x22t+22i+3+2i+1x22t+22i+5+2i+1x22t+22i+7)+2t+1x44t13+2t+2x44t11+2t+1x44t9+2t+1x44t72t+1x44t5+2t+1x44t3,$$\begin{array}{} \displaystyle\ \begin{array}{l} Z{g_4}(D[n]) = 2{x^{22t}} + 4{x^{22t + 1}} + 2{x^{22t + 3}} + 2{x^{22t + 5}} + 4{x^{22t + 7}} + \sum\limits_{i = 1}^{t - 1} ( {2^{i + 1}}{x^{22t + 22i - 13}}\\ + {2^{i + 2}}{x^{22t + 22i - 11}} + {2^{i + 1}}{x^{22t + 22i - 9}} + {2^{i + 1}}{x^{22t + 22i - 7}} + {2^{i + 1}}{x^{22t + 22i - 5}}\\ + {2^{i + 1}}{x^{22t + 22i - 3}} + {2^{i + 1}}{x^{22t + 22i - 1}} + {2^{i + 1}}{x^{22t + 22i + 1}} + {2^{i + 1}}{x^{22t + 22i + 3}} + {2^{i + 1}}{x^{22t + 22i + 5}}\\ + {2^{i + 1}}{x^{22t + 22i + 7}}) + {2^{t + 1}}{x^{44t - 13}} + {2^{t + 2}}{x^{44t - 11}} + {2^{t + 1}}{x^{44t - 9}}\\ + {2^{t + 1}}{x^{44t - 7}} + {2^{t + 1}}{x^{44t - 5}} + {2^{t + 1}}{x^{44t - 3}}, \end{array} \end{array}$$

Zg6(D[n])=2x(11t)(11t)+4x(11t)(11t+1)+2x(11t+1)(11t+2)+2x(11t+2)(11t+3)+4x(11t+3)(11t+4)+i=1t1(2i+1x(11t+11i7)(11t+11i6)+2i+2x(11t+11i6)(11t+11i5)+2i+1x(11t+11i5)(11t+11i4)+2i+1x(11t+11i4)(11t+11i3)+2i+1x(11t+11i3)(11t+11i2)+2i+1x(11t+11i2)(11t+11i1)+2i+1x(11t+11i1)(11t+11i)+2i+1x(11t+11i)(11t+11i+1)+2i+1x(11t+11i+1)(11t+11i+2)+2i+1x(11t+11i+2)(11t+11i+3)+2i+1x(11t+11i+3)(11t+11i+4))+2t+1x(22t7)(22t6)+2t+2x(22t6)(22t5)+2t+1x(22t5)(22t4)+2t+1x(22t4)(22t3)+2t+1x(22t3)(22t2)+2t+1x(22t2)(22t1).$$\begin{array}{} \displaystyle \begin{array}{l} Z{g_6}(D[n]) = 2{x^{(11t) \cdot (11t)}} + 4{x^{(11t) \cdot (11t + 1)}} + 2{x^{(11t + 1) \cdot (11t + 2)}} + 2{x^{(11t + 2) \cdot (11t + 3)}}\\ + 4{x^{(11t + 3) \cdot (11t + 4)}} + \sum\limits_{i = 1}^{t - 1} ( {2^{i + 1}}{x^{(11t + 11i - 7) \cdot (11t + 11i - 6)}} + {2^{i + 2}}{x^{(11t + 11i - 6)(11t + 11i - 5)}}\\ + {2^{i + 1}}{x^{(11t + 11i - 5) \cdot (11t + 11i - 4)}} + {2^{i + 1}}{x^{(11t + 11i - 4) \cdot (11t + 11i - 3)}} + {2^{i + 1}}{x^{(11t + 11i - 3) \cdot (11t + 11i - 2)}}\\ + {2^{i + 1}}{x^{(11t + 11i - 2) \cdot (11t + 11i - 1)}} + {2^{i + 1}}{x^{(11t + 11i - 1) \cdot (11t + 11i)}} + {2^{i + 1}}{x^{(11t + 11i) \cdot (11t + 11i + 1)}}\\ + {2^{i + 1}}{x^{(11t + 11i + 1) \cdot (11t + 11i + 2)}} + {2^{i + 1}}{x^{(11t + 11i + 2) \cdot (11t + 11i + 3)}} + {2^{i + 1}}{x^{(11t + 11i + 3) \cdot (11t + 11i + 4)}})\\ + {2^{t + 1}}{x^{(22t - 7) \cdot (22t - 6)}} + {2^{t + 2}}{x^{(22t - 6) \cdot (22t - 5)}} + {2^{t + 1}}{x^{(22t - 5) \cdot (22t - 4)}}\\ + {2^{t + 1}}{x^{(22t - 4) \cdot (22t - 3)}} + {2^{t + 1}}{x^{(22t - 3) \cdot (22t - 2)}} + {2^{t + 1}}{x^{(22t - 2) \cdot (22t - 1)}}. \end{array} \end{array}$$

If n ≥ 5 and n ≡ 1(mod2), then

GA4(D[n])=2+8(11t+4)(11t+5)22t+9+4(11t+5)(11t+6)22t+11+4(11t+6)(11t+7)22t+13+8(11t+7)(11t+8)22t+15+8(11t+8)(11t+9)22t+17+16(11t+9)(11t+10)22t+19+8(11t+10)(11t+11)22t+21+8(11t+11)(11t+12)22t+23+8(11t+12)(11t+13)22t+25+8(11t+13)(11t+14)22t+27+8(11t+14)(11t+15)22t+29+8(11t+15)(11t+16)22t+31+8(11t+16)(11t+17)22t+33+8(11t+17)(11t+18)22t+35+i=1t1(2i+3(11t+11i+7)(11t+11i+8)22t+22i+15+2i+3(11t+11i+8)(11t+11i+9)22t+22i+17+2i+4(11t+11i+9)(11t+11i+10)22t+22i+19+2i+3(11t+11i+10)(11t+11i+11)22t+22i+21+2i+3(11t+11i+11)(11t+11i+12)22t+22i+23+2i+3(11t+11i+12)(11t+11i+13)22t+22i+25+2i+3(11t+11i+13)(11t+11i+14)22t+22i+27+2i+3(11t+11i+14)(11t+11i+15)22t+22i+29+2i+3(11t+11i+15)(11t+11i+16)22t+22i+31+2i+3(11t+11i+16)(11t+11i+17)22t+22i+33+2i+3(11t+11i+17)(11t+11i+18)22t+22i+35),$$\begin{array}{} \displaystyle \begin{array}{l} G{A_4}(D[n]) = 2 + \frac{{8\sqrt {(11t + 4) \cdot (11t + 5)} }}{{22t + 9}}\\ + \frac{{4\sqrt {(11t + 5) \cdot (11t + 6)} }}{{22t + 11}} + \frac{{4\sqrt {(11t + 6) \cdot (11t + 7)} }}{{22t + 13}} + \frac{{8\sqrt {(11t + 7) \cdot (11t + 8)} }}{{22t + 15}}\\ + \frac{{8\sqrt {(11t + 8) \cdot (11t + 9)} }}{{22t + 17}} + \frac{{16\sqrt {(11t + 9) \cdot (11t + 10)} }}{{22t + 19}} + \frac{{8\sqrt {(11t + 10) \cdot (11t + 11)} }}{{22t + 21}}\\ + \frac{{8\sqrt {(11t + 11) \cdot (11t + 12)} }}{{22t + 23}} + \frac{{8\sqrt {(11t + 12) \cdot (11t + 13)} }}{{22t + 25}} + \frac{{8\sqrt {(11t + 13) \cdot (11t + 14)} }}{{22t + 27}}\\ + \frac{{8\sqrt {(11t + 14) \cdot (11t + 15)} }}{{22t + 29}} + \frac{{8\sqrt {(11t + 15) \cdot (11t + 16)} }}{{22t + 31}} + \frac{{8\sqrt {(11t + 16) \cdot (11t + 17)} }}{{22t + 33}}\\ + \frac{{8\sqrt {(11t + 17) \cdot (11t + 18)} }}{{22t + 35}} + \sum\limits_{i = 1}^{t - 1} ( {2^{i + 3}}\frac{{\sqrt {(11t + 11i + 7) \cdot (11t + 11i + 8)} }}{{22t + 22i + 15}}\\ + {2^{i + 3}}\frac{{\sqrt {(11t + 11i + 8) \cdot (11t + 11i + 9)} }}{{22t + 22i + 17}} + {2^{i + 4}}\frac{{\sqrt {(11t + 11i + 9) \cdot (11t + 11i + 10)} }}{{22t + 22i + 19}}\\ + {2^{i + 3}}\frac{{\sqrt {(11t + 11i + 10) \cdot (11t + 11i + 11)} }}{{22t + 22i + 21}} + {2^{i + 3}}\frac{{\sqrt {(11t + 11i + 11) \cdot (11t + 11i + 12)} }}{{22t + 22i + 23}}\\ + {2^{i + 3}}\frac{{\sqrt {(11t + 11i + 12) \cdot (11t + 11i + 13)} }}{{22t + 22i + 25}} + {2^{i + 3}}\frac{{\sqrt {(11t + 11i + 13) \cdot (11t + 11i + 14)} }}{{22t + 22i + 27}}\\ + {2^{i + 3}}\frac{{\sqrt {(11t + 11i + 14) \cdot (11t + 11i + 15)} }}{{22t + 22i + 29}} + {2^{i + 3}}\frac{{\sqrt {(11t + 11i + 15) \cdot (11t + 11i + 16)} }}{{22t + 22i + 31}}\\ + {2^{i + 3}}\frac{{\sqrt {(11t + 11i + 16) \cdot (11t + 11i + 17)} }}{{22t + 22i + 33}} + {2^{i + 3}}\frac{{\sqrt {(11t + 11i + 17) \cdot (11t + 11i + 18)} }}{{22t + 22i + 35}}), \end{array} \end{array}$$

ABC5(D[n])=211t+422t+6+422t+7(11t+4)(11t+5)+222t+9(11t+5)(11t+6)+222t+11(11t+6)(11t+7)+422t+13(11t+7)(11t+8)+422t+15(11t+8)(11t+9)+822t+17(11t+9)(11t+10)+422t+19(11t+10)(11t+11)+422t+21(11t+11)(11t+12)+422t+23(11t+12)(11t+13)+422t+25(11t+13)(11t+14)+422t+27(11t+14)(11t+15)+422t+29(11t+15)(11t+16)+422t+31(11t+16)(11t+17)+422t+33(11t+17)(11t+18)+i=1t1(2i+222t+22i+13(11t+11i+7)(11t+11i+8)+2i+222t+22i+15(11t+11i+8)(11t+11i+9)+2i+322t+22i+17(11t+11i+9)(11t+11i+10)+2i+222t+22i+19(11t+11i+10)(11t+11i+11)+2i+222t+22i+21(11t+11i+11)(11t+11i+12)+2i+222t+22i+23(11t+11i+12)(11t+11i+13)+2i+222t+22i+25(11t+11i+13)(11t+11i+14)+2i+222t+22i+27(11t+11i+14)(11t+11i+15)+2i+222t+22i+29(11t+11i+15)(11t+11i+16)+2i+222t+22i+31(11t+11i+16)(11t+11i+17)+2i+222t+22i+33(11t+11i+17)(11t+11i+18)),$$\begin{array}{} \displaystyle \begin{array}{l} AB{C_5}(D[n]) = \frac{2}{{11t + 4}}\sqrt {22t + 6} + 4\sqrt {\frac{{22t + 7}}{{(11t + 4) \cdot (11t + 5)}}} \\ + 2\sqrt {\frac{{22t + 9}}{{(11t + 5) \cdot (11t + 6)}}} + 2\sqrt {\frac{{22t + 11}}{{(11t + 6) \cdot (11t + 7)}}} + 4\sqrt {\frac{{22t + 13}}{{(11t + 7) \cdot (11t + 8)}}} \\ + 4\sqrt {\frac{{22t + 15}}{{(11t + 8) \cdot (11t + 9)}}} + 8\sqrt {\frac{{22t + 17}}{{(11t + 9) \cdot (11t + 10)}}} + 4\sqrt {\frac{{22t + 19}}{{(11t + 10) \cdot (11t + 11)}}} \\ + 4\sqrt {\frac{{22t + 21}}{{(11t + 11) \cdot (11t + 12)}}} + 4\sqrt {\frac{{22t + 23}}{{(11t + 12) \cdot (11t + 13)}}} + 4\sqrt {\frac{{22t + 25}}{{(11t + 13) \cdot (11t + 14)}}} \\ + 4\sqrt {\frac{{22t + 27}}{{(11t + 14) \cdot (11t + 15)}}} + 4\sqrt {\frac{{22t + 29}}{{(11t + 15) \cdot (11t + 16)}}} + 4\sqrt {\frac{{22t + 31}}{{(11t + 16) \cdot (11t + 17)}}} \\ + 4\sqrt {\frac{{22t + 33}}{{(11t + 17) \cdot (11t + 18)}}} + \sum\limits_{i = 1}^{t - 1} ( {2^{i + 2}}\sqrt {\frac{{22t + 22i + 13}}{{(11t + 11i + 7) \cdot (11t + 11i + 8)}}} \\ + {2^{i + 2}}\sqrt {\frac{{22t + 22i + 15}}{{(11t + 11i + 8) \cdot (11t + 11i + 9)}}} + {2^{i + 3}}\sqrt {\frac{{22t + 22i + 17}}{{(11t + 11i + 9) \cdot (11t + 11i + 10)}}} \\ + {2^{i + 2}}\sqrt {\frac{{22t + 22i + 19}}{{(11t + 11i + 10) \cdot (11t + 11i + 11)}}} + {2^{i + 2}}\sqrt {\frac{{22t + 22i + 21}}{{(11t + 11i + 11) \cdot (11t + 11i + 12)}}} \\ + {2^{i + 2}}\sqrt {\frac{{22t + 22i + 23}}{{(11t + 11i + 12) \cdot (11t + 11i + 13)}}} + {2^{i + 2}}\sqrt {\frac{{22t + 22i + 25}}{{(11t + 11i + 13) \cdot (11t + 11i + 14)}}} \\ + {2^{i + 2}}\sqrt {\frac{{22t + 22i + 27}}{{(11t + 11i + 14) \cdot (11t + 11i + 15)}}} + {2^{i + 2}}\sqrt {\frac{{22t + 22i + 29}}{{(11t + 11i + 15) \cdot (11t + 11i + 16)}}} \\ + {2^{i + 2}}\sqrt {\frac{{22t + 22i + 31}}{{(11t + 11i + 16) \cdot (11t + 11i + 17)}}} + {2^{i + 2}}\sqrt {\frac{{22t + 22i + 33}}{{(11t + 11i + 17) \cdot (11t + 11i + 18)}}} ), \end{array} \end{array}$$

Π1*(D[n])=(22t+8)2(22t+9)4(22+11)2(22t+13)2(22t+15)4(22t+17)4(22t+19)8(22t+21)4(22t+23)4(22t+25)4(22t+27)4(22t+29)4(22t+31)4(22t+33)4(22t+35)4Πi=1t1(22t+22i15)2i+2(22t+22i157)2i+2(22t+22i19)2i+2(22t+22i21)2i+2(22t+22i+23)2i+2(22t+22i+25)2i+2(22t+22i+27)2i+2(22t+22i29)2i+2(22t+22i+31)2i+2(22t+22i+33)2i+2(22t+22i+35)2i+2),$$\begin{array}{} \displaystyle \begin{array}{l} \Pi _1^*(D[n]) = {(22t + 8)^2}{(22t + 9)^4}{(22t + 11)^2}{(22t + 13)^2}{(22t + 15)^4}{(22t + 17)^4}\\ \cdot {(22t + 19)^8}{(22t + 21)^4}{(22t + 23)^4}{(22t + 25)^4}{(22t + 27)^4}{(22t + 29)^4}{(22t + 31)^4}{(22t + 33)^4}{(22t + 35)^4}\\ \cdot \prod\limits_{i = 1}^{t - 1} {((} 22t + 22i + 15{)^{{2^{i + 2}}}}{(22t + 22i + 17)^{{2^{i + 2}}}}{(22t + 22i + 19)^{{2^{i + 3}}}}\\ \cdot {(22t + 22i + 21)^{{2^{i + 2}}}}{(22t + 22i + 23)^{{2^{i + 2}}}}{(22t + 22i + 25)^{{2^{i + 2}}}}{(22t + 22i + 27)^{{2^{i + 2}}}}\\ \cdot {(22t + 22i + 29)^{{2^{i + 2}}}}{(22t + 22i + 31)^{{2^{i + 2}}}}{(22t + 22i + 33)^{{2^{i + 2}}}}{(22t + 22i + 35)^{{2^{i + 2}}}}), \end{array} \end{array}$$

Π2*(D[n])=(11t+4)2(11t+56)6(11+6)4(11t+7)6(22t+8)8(22t+9)12(11t+10)12(11t+11)8(11t+12)8(11t+13)8(11t+14)8(11t+15)8(11t+16)8(11t+17)4(11t+18)4Πi=1t1(11t+11i7)2i+2(11t+11i8))2i+3(11t+11i19)32i+2(11t+11i10)32i+2(11t+11i11)2i+3(11t+11i+12)2i+3(11t+11i+13)2i+3(11t+11i+14)2i+3(11t+11i15)2i+3(11t+11i+16)2i+3(11t+11i+17)2i+3(11t+11i+18)2i+2),$$\begin{array}{} \displaystyle \begin{array}{l} \Pi _2^*(D[n]) = {(11t + 4)^8}{(11t + 5)^6}{(11t + 6)^4}{(11t + 7)^6}{(11t + 8)^8}{(11t + 9)^{12}}{(11t + 10)^{12}}\\ \cdot {(11t + 11)^8}{(11t + 12)^8}{(11t + 13)^8}{(11t + 14)^8}{(11t + 15)^8}{(11t + 16)^8}{(11t + 17)^8}{(11t + 18)^4}\\ \cdot \prod\limits_{i = 1}^{t - 1} {((} 11t + 11i + 7{)^{{2^{i + 2}}}}(11t + 11i + 8){)^{{2^{i + 3}}}}(11t + 11i + 9){)^{3 \cdot {2^{i + 2}}}}{(11t + 11i + 10)^{3 \cdot {2^{i + 2}}}}\\ \cdot {(11t + 11i + 11)^{{2^{i + 3}}}}{(11t + 11i + 12)^{{2^{i + 3}}}}{(11t + 11i + 13)^{{2^{i + 3}}}}{(11t + 11i + 14)^{{2^{i + 3}}}}\\ \cdot {(11t + 11i + 15)^{{2^{i + 3}}}}{(11t + 11i + 16)^{{2^{i + 3}}}}{(11t + 11i + 17)^{{2^{i + 3}}}}{(11t + 11i + 18)^{{2^{i + 2}}}}), \end{array} \end{array}$$

Zg4(D[n])=2x22t+8+4x22t+9+2x22t+11+2x22t+13+4x22t+15+4x22t+17+8x22t+19+4x22t+21+4x22t+23+4x22t+25+4x22t+27+4x22t+29+4x22t+31+4x22t+33+4x22t+35+i=1t1(2i+2x22t+22i+15+2i+2x22t+22i+17+2i+3x22t+22i+19+2i+2x22t+22i+21+2i+2x22t+22i+23+2i+2x22t+22i+25+2i+2x22t+22i+27+2i+2x22t+22i+29+2i+2x22t+22i+31+2i+2x22t+22i+33+2i+2x22t+22i+35),$$\begin{array}{} \displaystyle \begin{array}{l} Z{g_4}(D[n]) = 2{x^{22t + 8}} + 4{x^{22t + 9}} + 2{x^{22t + 11}} + 2{x^{22t + 13}} + 4{x^{22t + 15}}\\ + 4{x^{22t + 17}} + 8{x^{22t + 19}} + 4{x^{22t + 21}} + 4{x^{22t + 23}} + 4{x^{22t + 25}} + 4{x^{22t + 27}}\\ + 4{x^{22t + 29}} + 4{x^{22t + 31}} + 4{x^{22t + 33}} + 4{x^{22t + 35}} + \sum\limits_{i = 1}^{t - 1} ( {2^{i + 2}}{x^{22t + 22i + 15}}\\ + {2^{i + 2}}{x^{22t + 22i + 17}} + {2^{i + 3}}{x^{22t + 22i + 19}} + {2^{i + 2}}{x^{22t + 22i + 21}} + {2^{i + 2}}{x^{22t + 22i + 23}}\\ + {2^{i + 2}}{x^{22t + 22i + 25}} + {2^{i + 2}}{x^{22t + 22i + 27}} + {2^{i + 2}}{x^{22t + 22i + 29}} + {2^{i + 2}}{x^{22t + 22i + 31}}\\ + {2^{i + 2}}{x^{22t + 22i + 33}} + {2^{i + 2}}{x^{22t + 22i + 35}}), \end{array} \end{array}$$

Zg6(D[n])=2x(11t+4)(11t+4)+4x(11t+4)(11t+5)+2x(11t+5)(11t+6)+2x(11t+6)(11t+7)+4x(11t+7)(11t+8)+4x(11t+8)(11t+9)+8x(11t+9)(11t+10)+4x(11t+10)(11t+11)+4x(11t+11)(11t+12)+4x(11t+12)(11t+13)+4x(11t+13)(11t+14)+4x(11t+14)(11t+15)+4x(11t+15)(11t+16)+4x(11t+16)(11t+17)+4x(11t+17)(11t+18)+i=1t1(2i+2x(11t+11i+7)(11t+11i+8)+2i+2x(11t+11i+8)(11t+11i+9)+2i+3x(11t+11i+9)(11t+11i+10)+2i+2x(11t+11i+10)(11t+11i+11)+2i+2x(11t+11i+11)(11t+11i+12)+2i+2x(11t+11i+12)(11t+11i+13)+2i+2x(11t+11i+13)(11t+11i+14)+2i+2x(11t+11i+14)(11t+11i+15)+2i+2x(11t+11i+15)(11t+11i+16)+2i+2x(11t+11i+16)(11t+11i+17)+2i+2x(11t+11i+17)(11t+11i+18)).$$\begin{array}{} \displaystyle \begin{array}{l} Z{g_6}(D[n]) = 2{x^{(11t + 4) \cdot (11t + 4)}} + 4{x^{(11t + 4) \cdot (11t + 5)}} + 2{x^{(11t + 5) \cdot (11t + 6)}}\\ + 2{x^{(11t + 6) \cdot (11t + 7)}} + 4{x^{(11t + 7) \cdot (11t + 8)}} + 4{x^{(11t + 8) \cdot (11t + 9)}} + 8{x^{(11t + 9) \cdot (11t + 10)}}\\ + 4{x^{(11t + 10) \cdot (11t + 11)}} + 4{x^{(11t + 11) \cdot (11t + 12)}} + 4{x^{(11t + 12) \cdot (11t + 13)}} + 4{x^{(11t + 13) \cdot (11t + 14)}}\\ + 4{x^{(11t + 14) \cdot (11t + 15)}} + 4{x^{(11t + 15) \cdot (11t + 16)}} + 4{x^{(11t + 16) \cdot (11t + 17)}} + 4{x^{(11t + 17) \cdot (11t + 18)}}\\ + \sum\limits_{i = 1}^{t - 1} ( {2^{i + 2}}{x^{(11t + 11i + 7) \cdot (11t + 11i + 8)}} + {2^{i + 2}}{x^{(11t + 11i + 8) \cdot (11t + 11i + 9)}} + {2^{i + 3}}{x^{(11t + 11i + 9) \cdot (11t + 11i + 10)}}\\ + {2^{i + 2}}{x^{(11t + 11i + 10) \cdot (11t + 11i + 11)}} + {2^{i + 2}}{x^{(11t + 11i + 11) \cdot (11t + 11i + 12)}} + {2^{i + 2}}{x^{(11t + 11i + 12) \cdot (11t + 11i + 13)}}\\ + {2^{i + 2}}{x^{(11t + 11i + 13) \cdot (11t + 11i + 14)}} + {2^{i + 2}}{x^{(11t + 11i + 14) \cdot (11t + 11i + 15)}} + {2^{i + 2}}{x^{(11t + 11i + 15) \cdot (11t + 11i + 16)}}\\ + {2^{i + 2}}{x^{(11t + 11i + 16) \cdot (11t + 11i + 17)}} + {2^{i + 2}}{x^{(11t + 11i + 17) \cdot (11t + 11i + 18)}}). \end{array} \end{array}$$

Proof. Since D[n] is symmetrical, we can mark the vertices several representative symbols which are described in Figure 3 and Figure 4. Next, we only present the detailed proof of GA4 index, and other parts of result can be yielded in the similar way.

If n ≡ 1(mod2), then let t=n12$\begin{array}{} \displaystyle t = \frac{{n - 1}}{2} \end{array}$ and 1 ≤ it − 1. By the analysis of graph structure of D[n], the set of E(D[n]) can be divided into the following subsets which are described as follows:

(u, v): with eccentricities 11t + 4 and 11t + 4, and there are two edges in this class;

(v, w): with eccentricities 11t + 4 and 11t + 5, and there are four edges in this class;

(w, x): with eccentricities 11t + 5 and 11t + 6, and there are two edges in this class;

(x, y): with eccentricities 11t + 6 and 11t + 7, and there are two edges in this class;

(y, a1): with eccentricities 11t + 7 and 11t + 8, and there are four edges in this class;

(a1, b1): with eccentricities 11t + 8 and 11t + 9, and there are four edges in this class;

(b1, c1): with eccentricities 11t + 9 and 11t + 10, and there are eight edges in this class;

(c1, e1): with eccentricities 11t + 10 and 11t + 11, and there are four edges in this class;

(e1, f1): with eccentricities 11t + 11 and 11t + 12, and there are four edges in this class;

( f1, g1): with eccentricities 11t + 12 and 11t + 13, and there are four edges in this class;

(g1, h1): with eccentricities 11t + 13 and 11t + 14, and there are four edges in this class;

(h1, v1): with eccentricities 11t + 14 and 11t + 15, and there are four edges in this class;

(v1, w1): with eccentricities 11t + 15 and 11t + 16, and there are four edges in this class;

(w1, x1): with eccentricities 11t + 16 and 11t + 17, and there are four edges in this class;

(x1, y1): with eccentricities 11t + 17 and 11t + 18, and there are four edges in this class;

(yi, ai+1): with eccentricities 11t + 11i + 7 and 11t + 11i + 8, and there are 2i+2 edges in this class;

(ai+1, bi+1): with eccentricities 11t + 11i + 8 and 11t + 11i + 9, and there are 2i+2 edges in this class;

(bi+1, ci+1): with eccentricities 11t + 11i + 9 and 11t + 11i + 10, and there are 2i+3 edges in this class;

(ci+1, ei+1): with eccentricities 11t + 11i + 10 and 11t + 11i + 11, and there are 2i+2 edges in this class;

(ei+1, fi+1): with eccentricities 11t + 11i + 11 and 11t + 11i + 12, and there are 2i+2 edges in this class;

( fi+1, gi+1): with eccentricities 11t + 11i + 12 and 11t + 11i + 13, and there are 2i+2 edges in this class;

(gi+1, hi+1): with eccentricities 11t + 11i + 13 and 11t + 11i + 14, and there are 2i+2 edges in this class;

(hi+1, vi+1): with eccentricities 11t + 11i + 14 and 11t + 11i + 15, and there are 2i+2 edges in this class;

(vi+1, wi+1): with eccentricities 11t + 11i + 15 and 11t + 11i + 16, and there are 2i+2 edges in this class;

(wi+1, xi+1): with eccentricities 11t + 11i + 16 and 11t + 11i + 17, and there are 2i+2 edges in this class;

(xi+1, yi+1): with eccentricities 11t + 11i + 17 and 11t + 11i + 18, and there are 2i+2 edges in this class.

If t = 0, then n = 1, we have

GA4(D[1])=uvE(D[1])2ec(u)ec(v)ec(u)+ec(v)=22444+4+42454+5+22565+6+22676+7.$$\begin{array}{} \displaystyle GA_{4}(D[1])=\sum_{uv\in E(D[1])}\frac{2\sqrt{ec(u)ec(v)}}{ec(u)+ec(v)}=2\frac{2\sqrt{4\cdot4}}{4+4}+4\frac{2\sqrt{4\cdot5}}{4+5}+2\frac{2\sqrt{5\cdot6}}{5+6}+2\frac{2\sqrt{6\cdot7}}{6+7}. \end{array}$$

If t = 1, then n = 3, we get

GA4(D[3])=uvE(D[3])2ec(u)ec(v)ec(u)+ec(v)=22151515+15+42151615+16+22161716+17+22171817+18+42181918+19+42192019+20+42202120+21+42212221+22+42222322+23+42232423+24+42242524+25+42252625+26+42262726+27+42272827+28+42282928+29.$$\begin{array}{} \displaystyle \begin{array}{l} G{A_4}(D[3]) = \sum\limits_{uv \in E(D[3])} {\frac{{2\sqrt {ec(u)ec(v)} }}{{ec(u) + ec(v)}}} \\ = 2\frac{{2\sqrt {15 \cdot 15} }}{{15 + 15}} + 4\frac{{2\sqrt {15 \cdot 16} }}{{15 + 16}} + 2\frac{{2\sqrt {16 \cdot 17} }}{{16 + 17}} + 2\frac{{2\sqrt {17 \cdot 18} }}{{17 + 18}} + 4\frac{{2\sqrt {18 \cdot 19} }}{{18 + 19}}\\ + 4\frac{{2\sqrt {19 \cdot 20} }}{{19 + 20}} + 4\frac{{2\sqrt {20 \cdot 21} }}{{20 + 21}} + 4\frac{{2\sqrt {21 \cdot 22} }}{{21 + 22}} + 4\frac{{2\sqrt {22 \cdot 23} }}{{22 + 23}} + 4\frac{{2\sqrt {23 \cdot 24} }}{{23 + 24}}\\ + 4\frac{{2\sqrt {24 \cdot 25} }}{{24 + 25}} + 4\frac{{2\sqrt {25 \cdot 26} }}{{25 + 26}} + 4\frac{{2\sqrt {26 \cdot 27} }}{{26 + 27}} + 4\frac{{2\sqrt {27 \cdot 28} }}{{27 + 28}} + 4\frac{{2\sqrt {28 \cdot 29} }}{{28 + 29}}. \end{array} \end{array}$$

If n ≥ 5, then we obtain

GA4(D[n])=uvE(D[n])2ec(u)ec(v)ec(u)+ec(v)=22(11t+4)(11t+4)(11t+4)+(11t+4)+42(11t+4)(11t+5)(11t+4)+(11t+5)+22(11t+5)(11t+6)(11t+5)+(11t+6)+22(11t+6)(11t+7)(11t+6)+(11t+7)+42(11t+7)(11t+8)(11t+7)+(11t+8)+42(11t+8)(11t+9)(11t+8)+(11t+9)+82(11t+9)(11t+10)(11t+9)+(11t+10)+42(11t+10)(11t+11)(11t+10)+(11t+11)+42(11t+11)(11t+12)(11t+11)+(11t+12)+42(11t+12)(11t+13)(11t+12)+(11t+13)+42(11t+13)(11t+14)(11t+13)+(11t+14)+42(11t+14)(11t+15)(11t+14)+(11t+15)+42(11t+15)(11t+16)(11t+15)+(11t+16)+42(11t+16)(11t+17)(11t+16)+(11t+17)+42(11t+17)(11t+18)(11t+17)+(11t+18)+i=1t1(2i+22(11t+11i+7)(11t+11i+8)(11t+11i+7)+(11t+11i+8)+2i+22(11t+11i+8)(11t+11i+9)(11t+11i+8)+(11t+11i+9)+2i+32(11t+11i+9)(11t+11i+10)(11t+11i+9)+(11t+11i+10)+2i+22(11t+11i+10)(11t+11i+11)(11t+11i+10)+(11t+11i+11)+2i+22(11t+11i+11)(11t+11i+12)(11t+11i+11)+(11t+11i+12)+2i+22(11t+11i+12)(11t+11i+13)(11t+11i+12)+(11t+11i+13)+2i+22(11t+11i+13)(11t+11i+14)(11t+11i+13)+(11t+11i+14)+2i+22(11t+11i+14)(11t+11i+15)(11t+11i+14)+(11t+11i+15)+2i+22(11t+11i+15)(11t+11i+16)(11t+11i+15)+(11t+11i+16)+2i+22(11t+11i+16)(11t+11i+17)(11t+11i+16)+(11t+11i+17)+2i+22(11t+11i+17)(11t+11i+18)(11t+11i+17)+(11t+11i+18)).$$\begin{array}{} \displaystyle \begin{array}{l} G{A_4}(D[n]) = \sum\limits_{uv \in E(D[n])} {\frac{{2\sqrt {ec(u)ec(v)} }}{{ec(u) + ec(v)}}} = 2\frac{{2\sqrt {(11t + 4) \cdot (11t + 4)} }}{{(11t + 4) + (11t + 4)}} + 4\frac{{2\sqrt {(11t + 4) \cdot (11t + 5)} }}{{(11t + 4) + (11t + 5)}}\\ + 2\frac{{2\sqrt {(11t + 5) \cdot (11t + 6)} }}{{(11t + 5) + (11t + 6)}} + 2\frac{{2\sqrt {(11t + 6) \cdot (11t + 7)} }}{{(11t + 6) + (11t + 7)}} + 4\frac{{2\sqrt {(11t + 7) \cdot (11t + 8)} }}{{(11t + 7) + (11t + 8)}}\\ + 4\frac{{2\sqrt {(11t + 8) \cdot (11t + 9)} }}{{(11t + 8) + (11t + 9)}} + 8\frac{{2\sqrt {(11t + 9) \cdot (11t + 10)} }}{{(11t + 9) + (11t + 10)}} + 4\frac{{2\sqrt {(11t + 10) \cdot (11t + 11)} }}{{(11t + 10) + (11t + 11)}}\\ + 4\frac{{2\sqrt {(11t + 11) \cdot (11t + 12)} }}{{(11t + 11) + (11t + 12)}} + 4\frac{{2\sqrt {(11t + 12) \cdot (11t + 13)} }}{{(11t + 12) + (11t + 13)}} + 4\frac{{2\sqrt {(11t + 13) \cdot (11t + 14)} }}{{(11t + 13) + (11t + 14)}}\\ + 4\frac{{2\sqrt {(11t + 14) \cdot (11t + 15)} }}{{(11t + 14) + (11t + 15)}} + 4\frac{{2\sqrt {(11t + 15) \cdot (11t + 16)} }}{{(11t + 15) + (11t + 16)}} + 4\frac{{2\sqrt {(11t + 16) \cdot (11t + 17)} }}{{(11t + 16) + (11t + 17)}}\\ + 4\frac{{2\sqrt {(11t + 17) \cdot (11t + 18)} }}{{(11t + 17) + (11t + 18)}} + \sum\limits_{i = 1}^{t - 1} ( {2^{i + 2}}\frac{{2\sqrt {(11t + 11i + 7) \cdot (11t + 11i + 8)} }}{{(11t + 11i + 7) + (11t + 11i + 8)}}\\ + {2^{i + 2}}\frac{{2\sqrt {(11t + 11i + 8) \cdot (11t + 11i + 9)} }}{{(11t + 11i + 8) + (11t + 11i + 9)}} + {2^{i + 3}}\frac{{2\sqrt {(11t + 11i + 9) \cdot (11t + 11i + 10)} }}{{(11t + 11i + 9) + (11t + 11i + 10)}}\\ + {2^{i + 2}}\frac{{2\sqrt {(11t + 11i + 10) \cdot (11t + 11i + 11)} }}{{(11t + 11i + 10) + (11t + 11i + 11)}} + {2^{i + 2}}\frac{{2\sqrt {(11t + 11i + 11) \cdot (11t + 11i + 12)} }}{{(11t + 11i + 11) + (11t + 11i + 12)}}\\ + {2^{i + 2}}\frac{{2\sqrt {(11t + 11i + 12) \cdot (11t + 11i + 13)} }}{{(11t + 11i + 12) + (11t + 11i + 13)}} + {2^{i + 2}}\frac{{2\sqrt {(11t + 11i + 13) \cdot (11t + 11i + 14)} }}{{(11t + 11i + 13) + (11t + 11i + 14)}}\\ + {2^{i + 2}}\frac{{2\sqrt {(11t + 11i + 14) \cdot (11t + 11i + 15)} }}{{(11t + 11i + 14) + (11t + 11i + 15)}} + {2^{i + 2}}\frac{{2\sqrt {(11t + 11i + 15) \cdot (11t + 11i + 16)} }}{{(11t + 11i + 15) + (11t + 11i + 16)}}\\ + {2^{i + 2}}\frac{{2\sqrt {(11t + 11i + 16) \cdot (11t + 11i + 17)} }}{{(11t + 11i + 16) + (11t + 11i + 17)}} + {2^{i + 2}}\frac{{2\sqrt {(11t + 11i + 17) \cdot (11t + 11i + 18)} }}{{(11t + 11i + 17) + (11t + 11i + 18)}}). \end{array} \end{array}$$

If n ≡ 0(mod2), then let t=n2$\begin{array}{} t = \frac{n}{2} \end{array}$ and 1 ≤ it − 1. According to the analysis of molecular structure of D[n], the edge set of D[n] can be divided into the following subsets which are presented as follows:

(u, v): with eccentricities 11t and 11t, and there are two edges in this class;

(v, w): with eccentricities 11t and 11t + 1, and there are four edges in this class;

(w, x): with eccentricities 11t + 1 and 11t + 2, and there are two edges in this class;

(x, y): with eccentricities 11t + 2 and 11t + 3, and there are two edges in this class;

(y, a1): with eccentricities 11t + 3 and 11t + 4, and there are four edges in this class;

(ai, bi): with eccentricities 11t + 11i − 7 and 11t + 11i − 6, and there are 2i+1 edges in this class;

(bi, ci): with eccentricities 11t + 11i − 6 and 11t + 11i − 5, and there are 2i+2 edges in this class;

(ci, ei): with eccentricities 11t + 11i − 5 and 11t + 11i − 4, and there are 2i+1 edges in this class;

(ei, fi): with eccentricities 11t + 11i − 4 and 11t + 11i − 3, and there are 2i+1 edges in this class;

(fi, gi): with eccentricities 11t + 11i − 3 and 11t + 11i − 2, and there are 2i+1 edges in this class;

(gi, hi): with eccentricities 11t + 11i − 2 and 11t + 11i − 1, and there are 2i+1 edges in this class;

(hi, vi): with eccentricities 11t + 11i − 1 and 11t + 11i, and there are 2i+1 edges in this class;

(vi, wi): with eccentricities 11t + 11i and 11t + 11i + 1, and there are 2i+1 edges in this class;

(wi, xi): with eccentricities 11t + 11i + 1 and 11t + 11i + 2, and there are 2i+1 edges in this class;

(xi, yi): with eccentricities 11t + 11i + 2 and 11t + 11i + 3, and there are 2i+1 edges in this class;

(yi, ai+1): with eccentricities 11t + 11i + 3 and 11t + 11i + 4, and there are 2i+2 edges in this class;

(at, bt): with eccentricities 22t − 7 and 22t − 6, and there are 2t+1 edges in this class;

(bt, ct): with eccentricities 22t − 6 and 22t − 5, and there are 2t+2 edges in this class;

(ct, et): with eccentricities 22t − 5 and 22t − 4, and there are 2t+1 edges in this class;

(et, ft): with eccentricities 22t − 4 and 22t − 3, and there are 2t+1 edges in this class;

(ft, gt): with eccentricities 22t − 3 and 22t − 2, and there are 2t+1 edges in this class;

(gt, ht): with eccentricities 22t − 2 and 22t − 1, and there are 2t+1 edges in this class.

If t = 1, then n = 2, we have

GA4(D[2])=uvE(D[2])2ec(u)ec(v)ec(u)+ec(v)=22111111+11+42111211+12+22121312+13+22131413+14+42141514+15+42151615+16+82161716+17+42171817+18+42181918+19+42192019+20+42202120+21.$$\begin{array}{} \displaystyle \begin{array}{l} G{A_4}(D[2]) = \sum\limits_{uv \in E(D[2])} {\frac{{2\sqrt {ec(u)ec(v)} }}{{ec(u) + ec(v)}}} = 2\frac{{2\sqrt {11 \cdot 11} }}{{11 + 11}} + 4\frac{{2\sqrt {11 \cdot 12} }}{{11 + 12}} + 2\frac{{2\sqrt {12 \cdot 13} }}{{12 + 13}} + 2\frac{{2\sqrt {13 \cdot 14} }}{{13 + 14}}\\ + 4\frac{{2\sqrt {14 \cdot 15} }}{{14 + 15}} + 4\frac{{2\sqrt {15 \cdot 16} }}{{15 + 16}} + 8\frac{{2\sqrt {16 \cdot 17} }}{{16 + 17}} + 4\frac{{2\sqrt {17 \cdot 18} }}{{17 + 18}} + 4\frac{{2\sqrt {18 \cdot 19} }}{{18 + 19}} + 4\frac{{2\sqrt {19 \cdot 20} }}{{19 + 20}} + 4\frac{{2\sqrt {20 \cdot 21} }}{{20 + 21}}. \end{array} \end{array}$$

If n ≥ 4, then we obtain

GA4(D[n])=uvE(D[n])2ec(u)ec(v)ec(u)+ec(v)=22(11t)(11t)(11t)+(11t)+42(11t)(11t+1)(11t)+(11t+1)+22(11t+1)(11t+2)(11t+1)+(11t+2)+22(11t+2)(11t+3)(11t+2)+(11t+3)+42(11t+3)(11t+4)(11t+3)+(11t+4)+i=1t1(2i+12(11t+11i7)(11t+11i6)(11t+11i7)+(11t+11i6)+2i+22(11t+11i6)(11t+11i5)(11t+11i6)+(11t+11i5)+2i+12(11t+11i5)(11t+11i4)(11t+11i5)+(11t+11i4)+2i+12(11t+11i4)(11t+11i3)(11t+11i4)+(11t+11i3)+2i+12(11t+11i3)(11t+11i2)(11t+11i3)+(11t+11i2)+2i+12(11t+11i2)(11t+11i1)(11t+11i2)+(11t+11i1)+2i+12(11t+11i1)(11t+11i)(11t+11i1)+(11t+11i)+2i+12(11t+11i)(11t+11i+1)(11t+11i)+(11t+11i+1)+2i+12(11t+11i+1)(11t+11i+2)(11t+11i+1)+(11t+11i+2)+2i+12(11t+11i+2)(11t+11i+3)(11t+11i+2)+(11t+11i+3)+2i+12(11t+11i+3)(11t+11i+4)(11t+11i+3)+(11t+11i+4))+2t+12(22t7)(22t6)(22t7)+(22t6)+2t+22(22t6)(22t5)(22t6)+(22t5)+2t+12(22t5)(22t4)(22t5)+(22t4)+2t+12(22t4)(22t3)(22t4)+(22t3)+2t+12(22t3)(22t2)(22t3)+(22t2)+2t+12(22t2)(22t1)(22t2)+(22t1).$$\begin{array}{} \displaystyle \begin{array}{l} G{A_4}(D[n]) = \sum\limits_{uv \in E(D[n])} {\frac{{2\sqrt {ec(u)ec(v)} }}{{ec(u) + ec(v)}}} = 2\frac{{2\sqrt {(11t) \cdot (11t)} }}{{(11t) + (11t)}} + 4\frac{{2\sqrt {(11t) \cdot (11t + 1)} }}{{(11t) + (11t + 1)}}\\ + 2\frac{{2\sqrt {(11t + 1) \cdot (11t + 2)} }}{{(11t + 1) + (11t + 2)}} + 2\frac{{2\sqrt {(11t + 2) \cdot (11t + 3)} }}{{(11t + 2) + (11t + 3)}} + 4\frac{{2\sqrt {(11t + 3) \cdot (11t + 4)} }}{{(11t + 3) + (11t + 4)}}\\ + \sum\limits_{i = 1}^{t - 1} ( {2^{i + 1}}\frac{{2\sqrt {(11t + 11i - 7) \cdot (11t + 11i - 6)} }}{{(11t + 11i - 7) + (11t + 11i - 6)}} + {2^{i + 2}}\frac{{2\sqrt {(11t + 11i - 6) \cdot (11t + 11i - 5)} }}{{(11t + 11i - 6) + (11t + 11i - 5)}}\\ + {2^{i + 1}}\frac{{2\sqrt {(11t + 11i - 5) \cdot (11t + 11i - 4)} }}{{(11t + 11i - 5) + (11t + 11i - 4)}} + {2^{i + 1}}\frac{{2\sqrt {(11t + 11i - 4) \cdot (11t + 11i - 3)} }}{{(11t + 11i - 4) + (11t + 11i - 3)}}\\ + {2^{i + 1}}\frac{{2\sqrt {(11t + 11i - 3) \cdot (11t + 11i - 2)} }}{{(11t + 11i - 3) + (11t + 11i - 2)}} + {2^{i + 1}}\frac{{2\sqrt {(11t + 11i - 2) \cdot (11t + 11i - 1)} }}{{(11t + 11i - 2) + (11t + 11i - 1)}}\\ + {2^{i + 1}}\frac{{2\sqrt {(11t + 11i - 1) \cdot (11t + 11i)} }}{{(11t + 11i - 1) + (11t + 11i)}} + {2^{i + 1}}\frac{{2\sqrt {(11t + 11i) \cdot (11t + 11i + 1)} }}{{(11t + 11i) + (11t + 11i + 1)}}\\ + {2^{i + 1}}\frac{{2\sqrt {(11t + 11i + 1) \cdot (11t + 11i + 2)} }}{{(11t + 11i + 1) + (11t + 11i + 2)}} + {2^{i + 1}}\frac{{2\sqrt {(11t + 11i + 2) \cdot (11t + 11i + 3)} }}{{(11t + 11i + 2) + (11t + 11i + 3)}}\\ + {2^{i + 1}}\frac{{2\sqrt {(11t + 11i + 3) \cdot (11t + 11i + 4)} }}{{(11t + 11i + 3) + (11t + 11i + 4)}}) + {2^{t + 1}}\frac{{2\sqrt {(22t - 7) \cdot (22t - 6)} }}{{(22t - 7) + (22t - 6)}}\\ + {2^{t + 2}}\frac{{2\sqrt {(22t - 6) \cdot (22t - 5)} }}{{(22t - 6) + (22t - 5)}} + {2^{t + 1}}\frac{{2\sqrt {(22t - 5) \cdot (22t - 4)} }}{{(22t - 5) + (22t - 4)}}\\ + {2^{t + 1}}\frac{{2\sqrt {(22t - 4) \cdot (22t - 3)} }}{{(22t - 4) + (22t - 3)}} + {2^{t + 1}}\frac{{2\sqrt {(22t - 3) \cdot (22t - 2)} }}{{(22t - 3) + (22t - 2)}}\\ + {2^{t + 1}}\frac{{2\sqrt {(22t - 2) \cdot (22t - 1)} }}{{(22t - 2) + (22t - 1)}}. \end{array} \end{array}$$

Thus, we yield the expected result.

Conclusion

In this paper, we mainly discuss two molecular graphs which commonly appeared in drug structures. Our results can be concluded as follows: first, we manifest the generalized degree distance of starlike tree; second, we report the eccentricity related indices of hetrofunctional dendrimer. Since these indices are widely used in the analysis of chemical and pharmacological properties of drugs, the theoretical results obtained in our article admit promising prospects of engineering applications in the field of chemistry, pharmacy and medical science.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

eISSN:
2444-8656
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, andere, Mathematik, Angewandte Mathematik, Allgemeines, Physik