Palindromic Closures and Thue-Morse Substitution for Markoff Numbers
und
30. Jan. 2018
Über diesen Artikel
Online veröffentlicht: 30. Jan. 2018
Seitenbereich: 25 - 35
Eingereicht: 07. Aug. 2016
Akzeptiert: 20. Jan. 2017
DOI: https://doi.org/10.1515/udt-2017-0013
Schlüsselwörter
© 2018
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
We state a new formula to compute the Markoff numbers using iterated palindromic closure and the Thue-Morse substitution. The main theorem shows that for each Markoff number m, there exists a word v ∈ {a, b}∗ such that m − 2 is equal to the length of the iterated palindromic closure of the iterated antipalindromic closure of the word av. This construction gives a new recursive construction of the Markoff numbers by the lengths of the words involved in the palindromic closure. This construction interpolates between the Fibonacci numbers and the Pell numbers.