Uneingeschränkter Zugang

The Bb-adic Symmetrization of Digital Nets for Quasi-Monte Carlo Integration

   | 22. Juli 2017

Zitieren

[1] BILYK, D.: On Roth’s orthogonal function method in discrepancy theory, Uniform Distrib. Theory 6 (2011), 143-184.Search in Google Scholar

[2] DAVENPORT, H.: Note on irregularities of distribution, Mathematika 3 (1956), 131-135.10.1112/S0025579300001807Search in Google Scholar

[3] DICK, J.: Walsh spaces containing smooth functions and quasi-Monte Carlo rules of arbitrary high order, SIAM J. Numer. Anal. 46 (2008), 1519-1553.10.1137/060666639Search in Google Scholar

[4] DICK, J.: Discrepancy bounds for infinite-dimensional order two digital sequences over F2, J. Number Theory 136 (2014), 204-232.10.1016/j.jnt.2013.09.012Search in Google Scholar

[5] DICK, J.-NUYENS, D.-PILLICHSHAMMER, F.: Lattice rules for nonperiodic smooth integrands, Numer. Math. 126 (2014), 259-291.10.1007/s00211-013-0566-0Search in Google Scholar

[6] DICK, J.-PILLICHSHAMMER, F.: Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration. Cambridge University Press, Cambridge, 2010.10.1017/CBO9780511761188Search in Google Scholar

[7] GODA, T.: On the Lp discrepancy of two-dimensional folded Hammersley point sets, Arch. Math. 103 (2014), 389-398.10.1007/s00013-014-0698-1Search in Google Scholar

[8] GODA, T.-SUZUKI, K.-YOSHIKI,T.: The b-adic tent transformation for quasi-Monte Carlo integration using digital nets, J. Approx. Theory 194 (2015), 62-86.10.1016/j.jat.2015.02.002Search in Google Scholar

[9] GODA, T.-SUZUKI, K.-YOSHIKI, T.: Digital nets with infinite digit expansions and construction of folded digital nets for quasi-Monte Carlo integration, J. Complexity (2016) 33 (2016), 30-54.10.1016/j.jco.2015.09.005Search in Google Scholar

[10] HALÁSZ, G.: On Roth’s method in the theory of irregularities of point distributions, in:Recent Progress in Analytic Number Theory, Academic Press, London, 1981, pp. 79-94.Search in Google Scholar

[11] HINRICHS, A.-KRITZINGER, R.-PILLICHSHAMMER, F.: Optimal order of Lp-discrepancy of digit shifted Hammersley point sets in dimension 2, Unif. Distrib. Theory 10 (2015), 115-133.Search in Google Scholar

[12] KRITZINGER, R.: Lp- and Sr p,qB-discrepancy of the symmetrized van der Corput sequence and modified Hammersley point sets in arbitrary bases, J. Complexity 33 (2016), 145-168.10.1016/j.jco.2015.10.002Search in Google Scholar

[13] LARCHER, G.-PILLICHSHAMMER, F.: Walsh series analysis of the L2 discrepancy of symmetrisized point sets, Monatsh. Math. 132 (2001), 1-18.10.1007/s006050170054Search in Google Scholar

[14] LARCHER, G.-PILLICHSHAMMER, F.: On the L2 discrepancy of the Sobol- Hammersley net in dimension 3, J. Complexity 18 (2002), 415-448.10.1006/jcom.2001.0606Search in Google Scholar

[15] MARKHASIN, L.: Lp- and Sr p,qB-discrepancy of (order 2) digital nets, Acta Arith. 168 (2015), 139-159.10.4064/aa168-2-4Search in Google Scholar

[16] MATOUŠEK, J.: Geometric Discrepancy. Springer-Verlag, Berlin, 1999.10.1007/978-3-642-03942-3Search in Google Scholar

[17] NIEDERREITER, H.: Random Number Generation and Quasi-Monte Carlo Methods. CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 63. SIAM, Philadelphia, 1992.10.1137/1.9781611970081Search in Google Scholar

[18] PILLICHSHAMMER, F.: On the Lp-discrepancy of the Hammersley point set, Monatsh. Math. 136 (2002), 7-79.10.1007/s006050200034Search in Google Scholar

[19] PONTRYAGIN, L. S.: Topological Groups. Gordon and Breach Science Publishers, Inc., New York, 1966.Search in Google Scholar

[20] PROINOV, P. D.: Symmetrization of the van der Corput generalized sequences, Proc. Japan Acad. Ser. A 64 (1988), 159-162.10.2183/pjab.64.159Search in Google Scholar

[21] ROTH, K. F.: On irregularities of distribution, Mathematika 1 (1954), 73-79.10.1112/S0025579300000541Search in Google Scholar

[22] SCHMIDT, W. M.: Irregularities of distribution, VI, Acta Arith. 21 (1972), 45-50.10.4064/aa-21-1-45-50Search in Google Scholar

[23] SCHMIDT, W. M.: Irregularities of distribution, X, in: Number Theory and Algebra, Academic Press, New York, 1977, pp. 311-329.Search in Google Scholar

[24] SLOAN, I. H.-JOE, S.: Lattice Methods for Multiple Integration. Oxford University Press, Oxford, 1994.Search in Google Scholar

[25] SLOAN, I. H.-WO´ZNIAKOWSKI H.: When are quasi-Monte Carlo algorithms efficient for high-dimensional integrals? J. Complexity 14 (1998), 1-33.Search in Google Scholar

eISSN:
2309-5377
Sprache:
Englisch