1. bookVolumen 38 (2016): Heft 2 (June 2016)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2083-831X
Erstveröffentlichung
09 Nov 2012
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
access type Uneingeschränkter Zugang

Shape optimization of road tunnel cross-section by simulated annealing

Online veröffentlicht: 15 Jul 2016
Volumen & Heft: Volumen 38 (2016) - Heft 2 (June 2016)
Seitenbereich: 47 - 52
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2083-831X
Erstveröffentlichung
09 Nov 2012
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
Abstract

The paper concerns shape optimization of a tunnel excavation cross-section. The study incorporates optimization procedure of the simulated annealing (SA). The form of a cost function derives from the energetic optimality condition, formulated in the authors’ previous papers. The utilized algorithm takes advantage of the optimization procedure already published by the authors. Unlike other approaches presented in literature, the one introduced in this paper takes into consideration a practical requirement of preserving fixed clearance gauge. Itasca Flac software is utilized in numerical examples. The optimal excavation shapes are determined for five different in situ stress ratios. This factor significantly affects the optimal topology of excavation. The resulting shapes are elongated in the direction of a principal stress greater value. Moreover, the obtained optimal shapes have smooth contours circumscribing the gauge.

[1] Kawa M., Różański A., Sobótka M., A verification of shape optimization procedures of tunnel underground excavations, Górnictwo i Geoinżynieria, 2011, Book 2, 535–541, (in Polish).Search in Google Scholar

[2] Ren G., Smith J.V., Tang J.W., Xie Y.M., Underground excavation shape optimization using an evolutionary procedure, Computers and Geotechnics, 2005, No. 32, 122–132.10.1016/j.compgeo.2004.12.001Search in Google Scholar

[3] Różański A., Sobótka M., A procedure of underground excavations shape optimization, Górnictwo i Geoinżynieria, 2009, Book 1, 519–529, (in Polish).Search in Google Scholar

[4] Sobótka M., Łydżba D., Różański A., Shape optimization of underground excavation by simulated annealing, Studia Geotechnica et Mechanica, 2013, 35(1), 209–218.10.2478/sgem-2013-0016Search in Google Scholar

[5] Nguyen T., Ghabraie K., Tran-Cong T., Simultaneous pattern and size optimisation of rock bolts for underground excavations, Computers and Geotechnics, 2015, 66, 264–277.10.1016/j.compgeo.2015.02.007Search in Google Scholar

[6] Sałustowicz A., Zarys mechaniki górotworu, Wydawnictwo Śląsk, Katowice, 1968.Search in Google Scholar

[7] Xie Y.M., Steven G.P., A simple evolutionary procedure for structural optimization, Comput. Struct., 1993, No. 49(5), 885–896.10.1016/0045-7949(93)90035-CSearch in Google Scholar

[8] Xie Y.M., Steven G.P., Evolutionary structural optimization, Springer, Berlin, 1997.10.1007/978-1-4471-0985-3Search in Google Scholar

[9] Kirkpatrick S., Gelatt C., Vecchi M., Optimization by simulated annealing, Science, 1983, Vol. 220, No. 4598, 671–680.10.1126/science.220.4598.67117813860Search in Google Scholar

[10] Sonmez F.O., Shape optimization of 2D structures using simulated annealing, Computer Methods in Applied Mechanics and Engineering, 2007, 196, 35, 3279–3299.10.1016/j.cma.2007.01.019Search in Google Scholar

[11] Sobótka M., Łydżba D., Shape Optimization of Soil-steel Structure by Simulated Annealing, Procedia Engineering, 91, 304–309.10.1016/j.proeng.2014.12.065Search in Google Scholar

[12] Różański A., Łydżba D., Jabłoński P., Numerical study of the size of representative volume element for linear elasticity problem, Studia Geotechnica et Mechanica, 2013, 35(2), 67–81.10.2478/sgem-2013-0024Search in Google Scholar

[13] Różański A., Łydżba D., From digital image of microstructure to the size of representative volume element: B4C/Al composite, Studia Geotechnica et Mechanica, 2011, 33(1), 55–68.Search in Google Scholar

[14] Chapman D., Metje N., Stärk A., Introduction to tunnel construction. 2010, Vol. 3. CRC Press.10.1201/9781315273495Search in Google Scholar

[15] Rabcewicz L.V., Bemessung von Hohlraumbauten, die “Neue Österreichische Bauweise” und ihr Einfluß auf Gebirgsdruckwirkungen und Dimensionierung, Felsmechanik und Ingenieurgeologie, 1963, 1, 3–4.Search in Google Scholar

[16] Shim P.Y., Manoochehri S., Generating optimal configurations in structural design using simulated annealing, International Journal for Numerical Methods in Engineering, 1997, 40(6), 1053–1069.10.1002/(SICI)1097-0207(19970330)40:6<1053::AID-NME97>3.0.CO;2-ISearch in Google Scholar

[17] Metropolis N. et.al., Equation of state calculation by fast computing machines, The Journal of Chemical Physics, 1953, Vol. 21, No. 6, 1087–1092.10.1063/1.1699114Search in Google Scholar

[18] FLAC Fast Lagrangian Analysis of Continua, User’s Guide, Itasca Consulting Group Inc. Minneapolis, 2011.Search in Google Scholar

[19] Majcherczyk T., Niedbalski Z., Kowalski M., 3D numerical modeling of road tunnel stabilityThe Laliki project, Archives of Mining Sciences, 2012, 57(1), 61–78.10.2478/v10267-012-0005-6Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo