Uneingeschränkter Zugang

Repeated Loading of Cohesive Soil – Shakedown Theory in Undrained Conditions


Zitieren

[1] ARVIN M.A., ASKARI F., FARZANEH O., Seismic behavior of slopes by lower bound shakedown theory, Computers and Geotechnics, 2012, 39, 107-115, DOI: 10.1016/j.compgeo.2011.08.001.10.1016/j.compgeo.2011.08.001Search in Google Scholar

[2] BOULBIBANE M., PONTER A.R.S., The linear matching method for the shakedown analysis of geotechnical problems, International Journal for Numerical and analytical Methods in Geomechanics, 2006, 30(2), 157-179, DOI: 10.1002/nag.481.10.1002/nag.481Search in Google Scholar

[3] BOULBIBANE M., WEICHERT D., Application of shakedown theory to soils with non-associated flow rules, Mechanics Research Communications, 1997, 24(5), 516-519, DOI: 10.1016/S0093-6413(97)00056-6.10.1016/S0093-6413(97)00056-6Search in Google Scholar

[4] CUNNY R.W., SLOAN R.C., Dynamic loading machine and results of preliminary small-scale footing tests, ASTM Special Technical Publication, 1961, 305, 65-77.10.1520/STP44378SSearch in Google Scholar

[5] GŁUCHOWSKI A., Estimating of shakedown limit for cohesive soils under cyclic loading from cCBR test, [in:] J. Bzówka (ed.), Wiedza i eksperymenty w budownictwie, 2014, 61-69.Search in Google Scholar

[6] HU C., LIU H., HUANG W., Anisotropic bounding-surface plasticity model for the cyclic shakedown and degradation of saturated clay, Computers and Geotechnics, 2012, 44, 34-47, DOI: 10.1016/j.compgeo.2012.03.009.10.1016/j.compgeo.2012.03.009Search in Google Scholar

[7] KALINOWSKA M., JASTRZĘBSKA M., Behaviour of cohesive soil subjected to low-frequency cyclic loading in straincontrolled tests, Studia Geotechnica et Mechanica, 2014, 36(3), 21-35, DOI: 10.2478/sgem-2014-0024.10.2478/sgem-2014-0024Search in Google Scholar

[8] KOITER W.T., General theorems for elastic-plastic solids, [in:] I.N. Sneddon, R. Hill (eds.), Progress in Solid Mechanics, 1960, 167-221.Search in Google Scholar

[9] KONIG J.A., Shakedown of Elastic-Plastic Structures, Elsevier, Warszawa, 1987.Search in Google Scholar

[10] LI H.X., YU H.S., A non linear programming approach to kinematic shakedown analysis of frictional materials, International Journal of Solids Structures, 2006, 43(21), 6594-6614, DOI: 10.1016/j.ijsolstr.2006.01.009.10.1016/j.ijsolstr.2006.01.009Search in Google Scholar

[11] MELAN E., Zur plastizitat des raumlichen Kontinuums, Ing. Arch., 1938, 19, 116-125.10.1007/BF02084409Search in Google Scholar

[12] NAZZAL M.D., MOHAMMAD L.N., AUSTIN A., Evaluation of the shakedown behavior of unbound granular base materials, Geo-Frontiers Congress, 2011.10.1061/41165(397)486Search in Google Scholar

[13] NI J., INDRARATNA B., GENG X.Y., CARTER J.P., RUJIKIATKAMJORN C., Radial consolidation of soft soils under cyclic loads, Computers and Geotechnics, 2013, 50, 1-5, DOI: 10.1016/jcompgeo.2012.11.011.Search in Google Scholar

[14] PANDE G.N., Shakedown of foundations subjected to cyclic loads, [in:] O.C. Zienkiewicz, G.N. Pande (eds.), Soil Mechanics - Transient and Cyclic Loads, 1982, 469-489.Search in Google Scholar

[15] CHINH P.D., Shakedown theory for elastic plastic kinematic hardening bodies, International Journal of Plasticity, 2007, 23(7), 1240-1259, DOI: 10.1016/j.compgeo.2012.11.011.10.1016/j.compgeo.2012.11.011Search in Google Scholar

[16] PONTER A.R.S., HEARLE A.D., JOHNSON K.L., Application of the kinematical shakedown theorem to rolling and sliding point contacts, Journal of the Mechanics and Physics of Solids, 1985, 33(4), 339-362.10.1016/0022-5096(85)90033-XSearch in Google Scholar

[17] RAYMOND G.P., KOMOS F.E., Repeated load testing of a model plane strain footing, Canadian Geotechnical Journal, 1978, 15(2), 190-201.10.1139/t78-019Search in Google Scholar

[18] SHARP R.W., BOOKER J.R., Shakedown of pavements under moving surface loads, Journal of Transportation Engineering, 1984, 110(1), 1-14.10.1061/(ASCE)0733-947X(1984)110:1(1)Search in Google Scholar

[19] SAS W., GŁUCHOWSKI A., Application of cyclic CBR test to approximation of subgrade displacement in road pavement, Acta Scientarum Polonorum-Architectura, 2013, 12(1), 51-61.Search in Google Scholar

[20] TAO M., MOHAMMAD L.N., NAZZAL M.D., ZHANG Z., WU Z., Application of shakedown theory in characterizing traditional and recycled pavement base materials, Journal of Transportation Engineering, 2010, 136(3), 214-222.10.1061/(ASCE)0733-947X(2010)136:3(214)Search in Google Scholar

[21] WERKMEISTER S., DAWSON A.R., WELLNER F., Permanent deformation behavior of granular materials and the shakedown concept, Transportation Research Record: Journal of the Transportation Research Board, 2001, 1757(1), 75-81.10.3141/1757-09Search in Google Scholar

[22] WERKMEISTER S., Permanent deformation behavior of unbound granular materials, Doctoral dissertation, University of Technology, Dresden, Germany, 2003.Search in Google Scholar

[23] WERKMEISTER S., Shakedown analysis of unbound granular materials using accelerated pavement test results from New Zeland’s CAPTIF facility, Geotechnical Special Publication, 2006, 154, Shanghai, China, 220-228.10.1061/40866(198)28Search in Google Scholar

[24] YASHUARA K., HIRAO K., HYDE A.F.L., Effects of cyclic loading on undrained strength and compressibility of clay, Soils and Foundations, 1992, 32(1), 100-116.10.3208/sandf1972.32.100Search in Google Scholar

[25] YU H. S., KHONG C. D., WANG J., ZHANG G., Experimental evaluation and extension of a simple critical state model for sand, Granular Matter, 2005, 7(4), 213-225, DOI: 10.1007/s10035-005-0209-y.10.1007/s10035-005-0209-ySearch in Google Scholar

[26] YU H.S., Plasticity and Geotechnics, Springer, New York, 2006.Search in Google Scholar

[27] YU H.S., HOSSAIN M.Z., Lower bound shakedown analysis of layered pavements using discontinuous stress fields, Computer Methods in Applied Mechanics and Engineering, 1998, 167(3), 209-222, DOI: 10.1016/S0045-7825 (98)00120-0.Search in Google Scholar

eISSN:
2083-831X
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Geowissenschaften, andere, Materialwissenschaft, Verbundwerkstoffe, Poröse Materialien, Physik, Mechanik und Fluiddynamik