1. bookVolumen 53 (2004): Heft 1-6 (December 2004)
22 Feb 2016
1 Hefte pro Jahr
access type Uneingeschränkter Zugang

Spatial Genetic Structure in Disturbed Populations of Quercus acutissima (Fagaceae)

Online veröffentlicht: 27 Oct 2017
Volumen & Heft: Volumen 53 (2004) - Heft 1-6 (December 2004)
Seitenbereich: 206 - 211
Eingereicht: 14 Jan 2004
22 Feb 2016
1 Hefte pro Jahr

Quercus acutissima is a large deciduous tree of hillsides ranging from South Korea to Japan. It occurs in many plant communities, often as a pioneer species in monospecific stands which colonized gaps after gap formation. This study used multilocus allozyme genotypes mapped from two disturbed populations near farm houses in southern Korea to compare our results with previous studies conducted on undisturbed populations of trees in southern Korea. Coancestry measures (fij), RIPLEY’s L-statistics, and WRIGHT’s F-statistics were then calculated to examine the distribution of individuals and spatial genetic structure both within and between populations. RIPLEY’s Lstatistics indicated significant aggregation of individuals at interplant distances. A weak but significant positive fine-scale genetic structure at 10 m distance was detected in the two disturbed populations, which is consistent with the structure found in an inland, disturbed population in southern Korea. Estimates of near-distance fij in the two populations (0.020 and 0.036) were considerably lower than that expected for half-sibs (0.125) under random mating, suggesting secondary seed dispersal and substantial overlap of seed shadows. The levels of genetic diversity within the two disturbed populations of Q. acutissima were found to be comparable to the within-mean for populations of other oak species. Significant deficits of heterozygosity were detected in both populations, probably due to several parent-offspring and sib matings. Finally, a significant but low differentiation between the two disturbed populations of Q. acutissima was found, which is likely to be attributable to long-distance pollen movement by wind, which should enhance homogeneity of allele frequencies between adjacent local oak populations.

ALDRICH, P. R., HAMRICK, J. L., CHAVARRIAGE, P. and KOCHERT, G. (1998): Microsatellite analysis of demographic genetic structure in fragmented populations of the tropical tree Symphonia globulifera. Mol. Ecol. 7, 933-944.10.1046/j.1365-294x.1998.00396.x9711860DOI öffnenSearch in Google Scholar

BACILIERI, R., LABBE, T. and KREMER, A. (1994): Intraspecific genetic structure in a mixed population of Quercus petraea (Matt.) Leibl and Q. robur L. Heredity 73, 130-141.10.1038/hdy.1994.112Search in Google Scholar

BERG, E. E. and HAMRICK, J. L. (1993): Regional genetic variation in turkey oak, Quercus laevis. Can. J. For. Res. 23, 1270-1274.Search in Google Scholar

BERG, E. E. and HAMRICK, J. L. (1994): Spatial and genetic structure of two sandhills oaks: Quercus laevis and Quercus margaretta (Fagaceae). Amer. J. Bot. 81, 7-14.10.1002/j.1537-2197.1994.tb15402.xSearch in Google Scholar

BORGARDT, A, and NIXON, K. C. (2003): A comparative flower and fruit anatomical study of Quercus acutissima, a biennialfruiting oak from the Cerris group (Fagaceae). Amer. J. Bot. 90, 1567-158.10.3732/ajb.90.11.156721653332Search in Google Scholar

BOYLE, T., LIENGSIRI, C. and PIEWLUANG, C. (1990): Genetic structure of black spruce on two contrasting sites. Heredity 65, 393-399.10.1038/hdy.1990.109DOI öffnenSearch in Google Scholar

CHUNG, M. G. and KANG, S. S. (1994): Genetic variation and population structure in Korean populations of Eurya japonica (Theaceae). Amer. J. Bot. 81,1077-1082.10.1002/j.1537-2197.1994.tb15597.xSearch in Google Scholar

CHUNG, M. Y. and CHUNG, M. G. (2002): Fine-scale genetic structure in populations of Quercus variabilis (Fagaceae) from southern Korea. Can. J. Bot. 80, 1034-1041.10.1139/b02-094DOI öffnenSearch in Google Scholar

CHUNG, M. Y. and CHUNG, M. G. (2004): Spatial genetic structure in populations of Quercus mongolica var. grosseserrata (Fagaceae) from southern Korea. Can. J. Bot. 82, 1402-1408.10.1139/b04-100DOI öffnenSearch in Google Scholar

CHUNG, M. Y., NASON, J. CHUNG, M. G., KIM, K.-J., PARK, C.-W., SUN, B.-Y. and PAK, J.-H. (2002): Landscape-level spatial genetic structure in Quercus acutissima (Fagaceae). Amer. J. Bot. 89, 1229-1236.10.3732/ajb.89.8.122921665723Search in Google Scholar

CLAYTON, J. W., and TRETIAK, D. N. (1972): Amine citrate buffers for pH control in starch gel electrophoresis. J. Fish. Res. Board Can. 29, 1169-1172.10.1139/f72-172DOI öffnenSearch in Google Scholar

COCKERHAM, C. C. (1969): Variance of gene frequencies. Evolution 23, 72-84.10.1111/j.1558-5646.1969.tb03496.x28562963Search in Google Scholar

DOW, B. D. and ASHLEY, M.V. (1996): Microsatellite analysis of seed dispersal and percentage of saplings in bur oak, Quercus macrocarpa. Mol. Ecol. 5, 615-627.10.1111/j.1365-294X.1996.tb00357.xDOI öffnenSearch in Google Scholar

DOW, B. D. and ASHLEY, M.V. (1998): High levels of gene flow in bur oak revealed by paternity analysis using microsatellites. J. Hered. 89, 62-70.10.1093/jhered/89.1.62DOI öffnenSearch in Google Scholar

DUCOUSSO, A., MICHAUD, H., and LUMARET, R. (1993): Reproduction and gene flow in the genus Quercus. Ann. Sci. For. 50 (suppl.) 1, 91-106.Search in Google Scholar

ELLSTRAND, N. C. (1992): Gene flow among seed plant populations. New For. 6, 241-256.10.1007/BF00120647Search in Google Scholar

EPPERSON, B. K. (1989): Spatial patterns of genetic variationwithin plant population. In: Plant population genetics, breeding, and genetic resources. Edited by A. H. D. BROWN, M. T. CLEGG, A. L. KAHLER and B. S. WEIR. Sinauer, Sunderland, pp. 229-253. Search in Google Scholar

EPPERSON, B. K. (1993): Recent advances in correlation analysis of spatial patterns of genetic variation. Evol. Biol. 27, 95-155.Search in Google Scholar

EPPERSON, B. K. (2003): Geographical genetics. Princeton University Press, Princeton, New Jersey.Search in Google Scholar

EPPERSON, B. K. and CHUNG, M. G. (2001): Spatial genetic structure of allozyme polymorphisms within populations of Pinus strobus (Pinaceae). Amer. J. Bot. 88, 1006-1010.10.2307/2657081Search in Google Scholar

GEBUREK, T. and TRIPP-KNOWLES, P. (1994): Genetic architecture in bur oak, Quercus macrocarpa (Fagaceae), inferred by means of spatial autocorrelation analysis. Pl. Syst. Evol. 189, 63-74.Search in Google Scholar

GOUDET, J. (2001): FSTAT, a program to estimate and test gene diversities and fixation indices, version 2.9.3. Computer program and documentation distributed by the author, website: http://www.unil.ch/izea/softwares/fstat.html.Search in Google Scholar

GUTTMAN, S. I. and WEIGT, L. A. (1989): Electrophoretic evidence of relationships among Quercus (oaks) of eastern North America. Can. J. Bot. 67, 339-351.Search in Google Scholar

HAMRICK, J. L., GODT, M. J. W. and SHERMAN-BROYLES, S. L. (1992): Factors influencing levels of genetic diversity in woody plant species. New For. 6, 95-124.10.1007/BF00120641Search in Google Scholar

HAMRICK, J. L., MURAWSKI, D. A. and NASON, J. D. (1993): The influence of seed dispersal mechanisms on the genetic structure of tropical tree populations. Vegetatio 107/108, 281-297.10.1007/BF00052230Search in Google Scholar

HARTL, D. L. and CLARK, A. G. (1997): Principles of population genetics, 3rd edn. Sinauer, Sunderland.Search in Google Scholar

HEYWOOD, J. S. (1991): Spatial analysis of genetic variation in plant populations. Annu. Rev. Ecol. Syst. 22, 235-255.10.1146/annurev.es.22.110191.002003DOI öffnenSearch in Google Scholar

JOHNSON, W. C. and ADIKISSON, C. S. (1985): Dispersal of beech nuts by blue jays in fragmented landscapes. Am. Middl. Nat. 113, 319-324.Search in Google Scholar

KALISZ, S., NASON, J. D., HANZAWA, F. A. and TONSOR, S. J. (2001): Spatial population genetic structure in Trillium grandiflorum: The roles of dispersal, mating, history and selection. Evolution 55, 1560-1568.10.1111/j.0014-3820.2001.tb00675.x11580015Search in Google Scholar

KNOWLES, P., PERRY, D. J. and FOSTER, H. A. (1992): Spatial genetic structure in two tamarack [Larix laricina (Du Roi) K. Kock] populations with differing establishment histories. Evolution 46, 572-576.10.1111/j.1558-5646.1992.tb02062.x28564037DOI öffnenSearch in Google Scholar

LEWIS, P. O. and ZAYKIN, D. (2001): Genetic Data Analysis: Computer program for the analysis of allelic data. Version 1.0[d16c]. Available at http://lewis.eeb.uconn.edu/lewishome/software.html.Search in Google Scholar

MITTON, J. B., LINHART, Y. B., STURGEON, K. B. and HAMRICK, J. L. (1979): Allozyme polymorphisms detected in mature needle tissue of ponderosa pine. J. Hered. 70, 86-89.10.1093/oxfordjournals.jhered.a109220Search in Google Scholar

PARKER, K. C., PARKER, A. J., BEATY, R. M., FULLER, M. M. and FAUST, T. D. (1997): Population structure and spatial pattern of two coastal populations of Ocala sand pine (Pinus clausa (Chapm. Ex Engelm.) Vasey ex Sarg. Var. clausa D. B. Ward). J. Torrey Bot. Club 124, 22-33.10.2307/2996595Search in Google Scholar

PARKER, K. C., HAMRICK, J. L., PARKER, A. J., and NASON, J. D. (2001): Fine-scale genetic structure in Pinus clausa (Pinaceae) populations: effects of disturbance history. Heredity 87, 99-113.10.1046/j.1365-2540.2001.00914.x11678992Search in Google Scholar

RIPLEY, B. D. (1976): The second-order analysis of stationary point processes. J. Appl. Prob. 13, 965-981.Search in Google Scholar

RIPLEY, B. D. (1977): Modelling spatial patterns. J. Royal Stat. Soc., Ser. B 39, 172-192. Search in Google Scholar

SAMUEL R., PINSKER, W. and EHRENDOEFER, F. (1995): Electrophoretic analysis of genetic variation within and between populations of Quercus cerris, Q. pubescens, Q. petraea and Q. robur (Fagaceae) from Eastern Austria. Bot. Acta 108, 290-299.Search in Google Scholar

SCHNABEL, A. and HAMRICK, J. L. (1990): Comparative analysis of population genetic structure in Quercus macrocarpa and Q. gsmbelii (Fagaceae). Syst. Bot. 15, 240-251.10.2307/2419179DOI öffnenSearch in Google Scholar

SCHNABEL, A., NASON, J. D. and HAMRICK, J. L. (1998): Understanding the population genetic structure of Gleditsia triacanthos L.: Seed dispersal and variation in female reproductive success. Mol. Ecol. 7, 819-832.10.1046/j.1365-294x.1998.00397.xDOI öffnenSearch in Google Scholar

SCHOEN, P. E. and LATTA, R. G. (1989): Spatial autocorrelation of genotypes in populations of Impatiens pallida and Impatiens capensis. Heredity 63, 181-189.10.1038/hdy.1989.90DOI öffnenSearch in Google Scholar

SMOUSE, P. E. and PEAKALL, R. (1999): Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity 82, 561-573.10.1038/sj.hdy.688518010383677DOI öffnenSearch in Google Scholar

SOKAL, R. R. and JACQUEZ, G. M. (1991): Testing inferences about microevolutionary processes by means of spatial autocorrelation analysis. Evolution 45, 152-168.10.2307/2409490Search in Google Scholar

SOKAL, R. R. and ODEN, N. L. (1978): Spatial autocorrelation in biology. 1. Methodology. Biol. J. Linn. Soc. 10, 199-249.Search in Google Scholar

SOLTIS, D. E., HAUFLER, C. H., DARROW, D. C. and GASTONY, G. J. (1983): Starch gel electrophoresis of ferns: a compilation of grinding buffers, gel and electrode buffers, and staining schedules. Am. Fern J. 73, 9-27.10.2307/1546611Search in Google Scholar

STREIFF, R., LABBE, T., BACILIERI, R., STEINKELLNER, H., GLOSSL, J. and KREMER, A. (1998): Within-population genetic structure in Quercus robur L. & Quercus petraea (Matt.) Liebl. assessed with isozymes and microsatellites. Mol. Ecol. 7, 317-328.10.1046/j.1365-294X.1998.00360.xDOI öffnenSearch in Google Scholar

UBUKATA, M., ITAHANA, N. and KOHONO, K. (1999): Examination of the mating system of mizunara (Quercus mongolica var. grosseserrata) in a natural stand based on spatial genetic structure and inbreeding depression. J. Jpn. For. Soc. 81, 280-285 [in Japanese with English summary].Search in Google Scholar

WEEDEN, N. F. and WENDEL, J. F. (1989): Genetics of plant isozymes. In: Isozymes in plant biology. Edited by D. E. SOLTIS and P. S. SOLTIS. Dioscorides Press, Portland, pp. 46-72.10.1007/978-94-009-1840-5_3Search in Google Scholar

WENDEL, J. F. and WEEDEN, N. F. (1989): Visualization and interpretation of plant isozymes. In: Isozymes in plant biology. Edited by D. E. SOLTIS and P. S. SOLTIS. Dioscorides Press, Portland, pp. 5-45.10.1007/978-94-009-1840-5_2DOI öffnenSearch in Google Scholar

WIER, B. S. and COCKERHAM, C. C. (1984): Estimating F-statistics for the analysis of population structure. Evolution 38, 1358-1370. Search in Google Scholar

WRIGHT, S. (1943): Isolation by distance. Genetics 28, 114-138.10.1093/genetics/28.2.114120919617247074Search in Google Scholar

WRIGHT, S. (1965): The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19, 395-420.10.1111/j.1558-5646.1965.tb01731.xDOI öffnenSearch in Google Scholar

YAMAMOTO, S. (1989): Gap dynamics in climax Fagus crenata forests. Bot. Mag., Tokyo 102, 93-114.10.1007/BF02488116DOI öffnenSearch in Google Scholar

YAMAMOTO, S. (2000): Forest gap dynamics and tree regeneration. J. For. Res. 5, 223-229.10.1007/BF02767114Search in Google Scholar

YOUNG, A. G. and MERRIAM, H. G. (1994): Effects of forest fragmentation on the spatial genetic structure of Acer saccharum Marsh. (sugar maple) populations. Heredity 72, 201-208.10.1038/hdy.1994.27Search in Google Scholar

YEH, F. C., YANG, R. C. and BOYLE, T. B. J. (1999): POPGENE. Ver.1.31. Microsoft Windows-based free ware for population genetic analysis. University of Alberta and Centre for InternationalForestry Research, Alberta, Canada. Available at http://www.ualberta.ca/~fyeh/index/htm.Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo