Uneingeschränkter Zugang

Evaluation of Fracture Parameters for Cracks in Coupled Thermoelasticity for Functionally Graded Materials


Zitieren

[1] Aoki, S.; Kishimoto, K. and Sakata, M. (1981) Crack tip stress and strain singularity in thermally loaded elastic-plastic materials. J. Appl. Mech., 48, 428-429.Search in Google Scholar

[2] Barsoum, R.S. (1976) On the use of isoparametric finite elements in linear fracture mechanics. Int. J. Num. Meth. Engn. 10, 25-37.Search in Google Scholar

[3] Betegon, C. and Hancock, J.W. (1991) Two parameter characterization of elastic-plastic crack tip fields. J. Appl. Mech., 58, 104-110.Search in Google Scholar

[4] Cotterell, B. and Rice, J.P. (1980) Slightly curved or kinked cracks. Int. J. Fracture, 16, 155-169.10.1007/BF00012619Search in Google Scholar

[5] Dolbow, J. and Gosz, M. (2002) On the computation of mixed-mode stress intensity factors in functionally graded materials. Int. J. Solids Structures, 39, 2557-2574.10.1016/S0020-7683(02)00114-2Search in Google Scholar

[6] Eischen, J.W. (1987) Fracture of nonhomogeneous materials. Int. J. Fracture 34, 3-22.10.1007/BF00042121Search in Google Scholar

[7] Erdogan, F. (1995) Fracture mechanics of functionally graded materials. Compos. Eng., 5, 753-770.Search in Google Scholar

[8] Eshelby, J.D; Read, W.T. and Shockley, W. (1953) Anisotropic elasticity with applications to dislocations. Acta Metallurgica, 1, 251-259.10.1016/0001-6160(53)90099-6Search in Google Scholar

[9] Gao, H. and Chiu, C.H. (1992) Slightly curved or kinked cracks in anisotropic elastic solids. Int.J. Solids Structures, 29, 947-972.10.1016/0020-7683(92)90068-5Search in Google Scholar

[10] Gu, P. and Asaro, R.J. (1997) Cracks in functionally graded materials. Int. J. Solids and Structures, 34, 1-17.10.1016/0020-7683(95)00289-8Search in Google Scholar

[11] Gupta, M., Alderliesten, R.C., Benedictus, R. (2015) A review of T-stress and its effects in fracture mechanics. Engng Fract Mech 134,218-241.10.1016/j.engfracmech.2014.10.013Search in Google Scholar

[12] Jin, Z.H. and Noda, N. (1993a) Minimization of thermal stress intensity factor for a crack in a metal-ceramic mixture. Trans. American Ceramic Soc. Functionally Gradient Materials, 34, 47-54.Search in Google Scholar

[13] Jin, Z.H. and Noda, N. (1993b) An internal crack parallel to the boundary of a nonhomogeneous half plane under thermal loading. Int. J. Engn. Sci., 31, 793-806.10.1016/0020-7225(93)90124-DSearch in Google Scholar

[14] Jin, Z.H. and Noda, N. (1994) Crack tip singular fields in nonhomogeneous materials. J. Appl.Mech., 64, 738-739.Search in Google Scholar

[15] Kfouri, A.P. (1986) Some evaluations of the elastic T-term using Eshelby’s method. Int. J.Fracture, 30, 301-315.10.1007/BF00019710Search in Google Scholar

[16] Kim, J.H. and Paulino, G.H. (2002) Finite element evaluation of mixed mode stress intensity factors in functionally graded materials. Int. J. Num. Meth. Engn., 53, 1903-1935.Search in Google Scholar

[17] Kim, J.H. and Paulino, G.H. (2003a) T-stress, mixed mode stress intensity factors, and crack initiation angles in functionally graded materials: A unified approach using the interaction integral method. Computer Meth. Appl. Mech. Engn., 192, 1463-1494.10.1016/S0045-7825(02)00652-7Search in Google Scholar

[18] Kim, J.H. and Paulino, G.H. (2003b) The interaction integral for fracture of orthotropic functionally graded materials: Evaluation of stress intensity factors. Int. J. Solids and Structures, 40, 3967-400110.1016/S0020-7683(03)00176-8Search in Google Scholar

[19] Kim, J.H. and Paulino, G.H. (2004) T-stress in orthotropic functionally graded materials: Lekhnitskii and Stroh formalisms. Int. J. Fracture, 126, 345-384.10.1023/B:FRAC.0000031092.47424.f0Search in Google Scholar

[20] Kishimoto, K.; Aoki, S. and Sakata, M. (1980) On the path independent integral - ɵ J . J. Engn.Fracture Mech., 13, 841-850.Search in Google Scholar

[21] Larsson, S.G. and Carlsson, A.J. (1973) Influence of nonsingular stress terms and specimen geometry on small-scale yielding at crack tips in elastic-plastic materials. J. Mech. Phys. Solids, 21, 263-277.10.1016/0022-5096(73)90024-0Search in Google Scholar

[22] Lekhnitskii, S.G. (1963) Theory of Elasticity of an Anisotropic Body. Holden Day.Search in Google Scholar

[23] Leevers, P.S. and Radon, J.C. (1982) Inherent stress biaxiality in various fracture specimen geometries. Int. J. Fracture, 19, 311-325.10.1007/BF00012486Search in Google Scholar

[24] Nakamura, T. and Parks, D.M. (1982) Determination of elastic T-stresses along three-dimensional crack fronts using an interaction integral. Int. J. Solids Structures, 29, 1597-1611.Search in Google Scholar

[25] Nemat-Alla, M. and Noda, N. (1996) Thermal stress intensity factor for functionally gradient half space with an edge crack under thermal load. Archive Appl. Mech., 66, 569-580.Search in Google Scholar

[26] Noda, N. and Jin, Z.H. (1993a) Thermal stress intensity factors for a crack in a functionally gradient material. Int. J. Solids Structures, 30, 1039-1056.10.1016/0020-7683(93)90002-OSearch in Google Scholar

[27] Noda, N. and Jin, Z.H. (1993b) Steady thermal stresses in an infinite nonhomogeneous elastic solid containing a crack. J. Thermal Stresses, 16, 181-196.10.1080/01495739308946224Search in Google Scholar

[28] Noda, N. and Jin, Z.H. (1995) Crack tip singularity fields in non-homogeneous body under thermal stress fields. JSME Int. Jour. Ser. A, 38, 364-369.Search in Google Scholar

[29] Nowacki, W. (1986), Thermoelasticity, Pergamon, Oxford.Search in Google Scholar

[30] Olsen, P.C. (1994) Determining the stress intensity factors KI, KII and the T-term via the conservation laws using the boundary element method. Engn. Fracture Mech., 49, 49-60.10.1016/0013-7944(94)90110-4Search in Google Scholar

[31] Ozturk, M. and Erdogan, F. (1997) Mode I crack problem in an inhomogeneous orthotropic medium. Int. J. Engn. Sci., 35, 869-883.Search in Google Scholar

[32] Ozturk, M. and Erdogan, F. (1999) The mixed mode crack problem in an inhomogeneous orthotropic medium. Int. J. Fracture, 98, 243-261.10.1023/A:1018352203721Search in Google Scholar

[33] Phan, A.V. (2011) A non-singular boundary integral formula for determining the T-stress for cracks of arbitrary geometry. Eng. Fracture Mech. 78, 2273-2285.10.1016/j.engfracmech.2011.05.001Search in Google Scholar

[34] Paulino, G.H.; Jin, Z.H. and Dodds, R.H. (2003) Failure of functionally graded materials. In: Karihaloo B, Knauss WG, editors, Comprehensive Structural Integrity, Volume 2, Elsevier Science, 607-644.10.1016/B0-08-043749-4/02101-7Search in Google Scholar

[35] Paulino, G.H. and Kim, J.H. (2004) A new approach to compute T-stress in functionally graded materials by means the interaction integral method. Engn. Fracture Mechanics, 71, 1907-1950.10.1016/j.engfracmech.2003.11.005Search in Google Scholar

[36] Rao, B.N. and Rahman, S. (2003) Mesh-free analysis of cracks in isotropic functionally graded materials. Engn. Fracture Mechanics, 70, 1-27.10.1016/S0013-7944(02)00038-3Search in Google Scholar

[37] Rice JR. (1974) Limitations to the small scale yielding approximation for crack tip plasticity. J Mech Phys Solids 22, 17-26.10.1016/0022-5096(74)90010-6Search in Google Scholar

[38] Selvarathinam A.S., Goree J.G. (1998) T-stress based fracture model for cracks in isotropic materials. Engng Fract Mech 60,543-61.10.1016/S0013-7944(98)00032-0Search in Google Scholar

[39] Shah, P.D.; Tan, C.L. and Wang, X. (2006) T-stress solutions for two-dimensional crack problems in anisotropic elasticity using the boundary element method. Fatigue Fract. Engn. Mater.Struc. 29, 343-356.Search in Google Scholar

[40] Sherry, A.H.; France, C.C. and Goldthorpe, M.R. (1995) Compendium of T-stress solutions for two and three dimensional cracked geometries. Fatigue Fract. Engn. Mater. Struct., 18, 141-155.Search in Google Scholar

[41] Sih, G.C.; Paris, P.C. and Irwin, G.R. (1965) On cracks in rectilinearly anisotropic bodies. Int. J.Fracture Mechanics, 1, 189-20310.1007/BF00186854Search in Google Scholar

[42] Sladek, J. and Sladek, V. (1997a) Evaluations of the T-stress for interface cracks by the boundary element method. Engn. Fracture Mech., 56, 813-825.10.1016/S0013-7944(96)00131-2Search in Google Scholar

[43] Sladek, J. and Sladek, V. (1997b) Evaluation of T-stresses and stress intensity factors in stationary thermoelasticity by the conservation integral method. Int. J. Fracture, 86, 199-219.Search in Google Scholar

[44] Sladek, J.; Sladek, V. and Fedelinski, P. (1997c) Integral formulation for elastodynamic Tstresses.Int. J. Fracture, 84, 103-116.10.1023/A:1007376029969Search in Google Scholar

[45] Sladek, J.; Sladek, V. and Zhang, Ch. (2005) An advanced numerical method for computing elastodynamic fracture parameters in functionally graded materials. Computational Materials Science, 32, 532-543.10.1016/j.commatsci.2004.09.011Search in Google Scholar

[46] Sladek, J., Sladek, V., Zhang, Ch., Tan, C.L. (2006) Evaluation of fracture parameters for crack problems in FGM by a meshless method. Journal Theoretical and Applied Mechanics, 44, 603-636. Search in Google Scholar

[47] Smith, D.J.; Ayatollahi, M.R. and Pavier, M.J. (2001) The role of T-stress in brittle fracture for linear elastic materials under mixed-mode loading. Fatigue Fracture Engn. Material Structure, 24, 137-150.Search in Google Scholar

[48] Sumpter, J.D.G. (1993) An experimental investigation of the T-stress approach, in: Constraint Effects in Fracture, ASTM STP 1171, 429-508.Search in Google Scholar

[49] Sumpter, J.D.G. and Hancock, J.W. (1991) Shallow crack toughness of HY80 welds - an analysis based on T. Int. J. Press. Vess. Piping, 45, 207-229.Search in Google Scholar

[50] Suresh, S. and Mortensen, A. (1998) Fundamentals of Functionally Graded Materials. Institute of Materials, London.Search in Google Scholar

[51] Tan, C.L., Wang, X. (2003) The use ofquarter-point crack-tip elements for T-stress determination in boundary element method analysis. Eng. Fracture Mech. 70, 2247-2252.10.1016/S0013-7944(02)00251-5Search in Google Scholar

[52] Yue, Z.Q.; Xiao, H.T. and Tham, L.G. (2003) Boundary element analysis of crack problems in functionally graded materials. Int. J. Solids and Structures, 40, 3273-3291.10.1016/S0020-7683(03)00094-5Search in Google Scholar

[53] Williams, M.L. (1957) On the stress distribution at the base of stationary crack. J. Appl. Mech., 24, 109-114.Search in Google Scholar

[54] Williams, J.G. and Ewing, P.D. (1972) Fracture under complex stress - the angled crack problem.J. Fracture Mech., 8, 441-446. Search in Google Scholar

eISSN:
2450-5471
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Maschinenbau, Grundlagen des Maschinenbaus, Mechanik