1. bookVolumen 18 (2018): Heft 1 (April 2018)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2286-2455
Erstveröffentlichung
16 Apr 2016
Erscheinungsweise
2 Hefte pro Jahr
Sprachen
Englisch
Open Access

INFORMATION-INSTRUMENTAL TOOLS OF MICROWAVE AND OPTICAL ENVIRONMENTAL MONITORING

Online veröffentlicht: 11 May 2018
Volumen & Heft: Volumen 18 (2018) - Heft 1 (April 2018)
Seitenbereich: 11 - 18
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
2286-2455
Erstveröffentlichung
16 Apr 2016
Erscheinungsweise
2 Hefte pro Jahr
Sprachen
Englisch

[1] Krapivin, V.F., Shutko, A.M. Information technol-ogies for remote monitoring of the environment. Springer/Praxis, Chichester U.K., 2012, 498 pp. 10.1007/978-3-642-20567-5Search in Google Scholar

[2] Nitu, C., Krapivin, V.F., Soldatov, V.Yu. Information-modeling technology for environmental investigations. Matrix Rom, Bucharest, Romania, 2013. 621 pp. Search in Google Scholar

[3] Mkrtchyan, F.A., Krapivin V.F. GIMS - technology in the water quality monitoring. Proceedings of the International Conference on GeoInformatics for Spatial-Infrastructure Development in Earth & Allied Sciences (GIS-IDEAS 2016). 12-15 November, 2016, Hanoi, Vietnam, pp. 191-196. Search in Google Scholar

[4] Nitu, C., Krapivin, V.F., Mkrtchyan, F.A., Soldatov, V.Yu., Dobrescu, A.S. Multi-functional informational - instrumental technology for the hydrochemical monitoring. Proceedings of the 21st International Conference on Control Systems and Computer Science, 29-31 May 2017, Bucharest, Romania. University POLITEHNICA of Bucharest, Romania, Vol. 1, Bucharest, Romania, pp. 715-720. 10.1109/CSCS.2017.110Search in Google Scholar

[5] Haarbrink, R., Krapivin, V.F., Krisilov, A., Krisilov ,V., Novichikhin, E.P., Shutko, A.M., Sidorov, I. Intelligent data processing in global monitoring and security. ITHEA, Sofia. 2011. 410 pp. Search in Google Scholar

[6] Krapivin, V.F., Varotsos,C.A., Soldatov, V.Yu. New Ecoinformatics tools in environmental science: applications and decision-making. Springer, London, U.K., 2015. 903 pp. 10.1007/978-3-319-13978-4Search in Google Scholar

[7] Krapivin, V.F., Mkrtchyan, F.A., Soldatov, V.Yu., Phillips, G.W. GIMS-based technology for vegetation microwave monitoring. Reports of the Moscow A. S. Popov Scientific-Technical Society of Radio Engineering, Electronics and Communications. Series "Ecoinformatiсs Problems", Issue XII, Moscow, 2016, pp. 10-17. Search in Google Scholar

[8] Krapivin, V.F., Varotsos, C.A., Christodoulakis, J. Mission to Mars: Adaptive identifier for the solution of inverse optical metrology tasks. An Inter-national Journal of Solar System Science: Earth, Moon, and Planets, 2016. V.4. P. 1-14. DOI 10.1007/s11038-016-9487-0. Search in Google Scholar

[9] Krapivin, V.F., Shutko, A.M., Chukhlantsev, A.,A., Golovachev, S.P., Phillips. G.W. GIMS-based method for vegetation microwave monitoring // Environmental Modelling and Software. 2006. Vol. 21. No. 3. P. 330-345. 10.1016/j.envsoft.2004.11.005Search in Google Scholar

[10] Mkrtchyan, F.A., Krapivin, V.F. About micro-wave radiometry and spectroellipsometric technologies for monitoring marine ecosystems. North Pacific Marine Science Organization (PICES) Annual Meeting 2016. “25 Year of PICES: Celebrating the Past, Imagining the Future”. Abstracts. November 2-13, 2016, San Di-ego, CA, USA, pp. 276-277. Search in Google Scholar

[11] Altenburger, R., Ait-Aissa, S., Antczak, P., Back-haus, T., Barceló, D., Seiler, T.B., Brion, F., Busch, W., Chipman, K., de Alda, M.L., de Aragăo Umbuzeiro, G. Future water quality monitoring-adapting tools to deal with mixtures of pollutants in water resource management. Science of the Total Environment, 2015, Vol. 512-513, pp.540-551. 10.1016/j.scitotenv.2014.12.05725644849Search in Google Scholar

[12] Pellerin, B.A., Bergamaschi, B.A., Horsburgh, J.S. In Situ Optical Water-Quality Sensor Net-works-Workshop Summary Report. U.S. Geo-logical Survey, Reston, Virginia: 2012, pp. 1-14. 10.3133/ofr20121044Search in Google Scholar

[13] Krapivin, V.F., Mkrtchyan, F.A. Spectroellipsometric tools for the water quality diagnostics in the Sea of Okhotsk. Proceedings of the 31st Inter-national Symposium on Okhotsk Sea & Sea Ice, 21-24 February 2016, Mombetsu, Hokaido, Japan. The Okhotsk Sea & Cold Ocean Research Association (OSCORA), Mombetsy, Hokkaido, Japan, 2016, pp. 101-1104. Search in Google Scholar

[14] Krapivin, V.F., Mkrtchyan, F.A., Soldatov, V.Yu., Tovarnitchi V.M. An expert system for the aquatic systems investigation. Proceedings of the 21st International Conference on Control Systems and Computer Science - CSCS21, 29-31 May 2017, University POLITEHNICA of Bucharest, Romania. Proceedings IEEE Computer Society, Conference Publishing Services (CPS), Vol. 1, Bucharest, Romania, 2017, pp. 703-707. 10.1109/CSCS.2017.108Search in Google Scholar

[15] Krapivin. V.F., Varotsos. C.A., Nghia, B.Q. A modeling system for monitoring water quality in lagoons. Water, Air & Soil Pollution, 2017. Vol. 228, No. 397, pp. 1-12, DOI 10.1007/s11270-017-3581-4. 10.1007/s11270-017-3581-4DOI öffnenSearch in Google Scholar

[16] Feng, W.W., Li, D., Cai, Z.Q., Zhang, Y.C. Xu, X. November. An instrument for on-line chemical oxygen demand and nitrate in water monitoring. Proceedings of the SPIE/COS Photonics Asia, 2016, Vol. 10026, pp. 1002611-1002611. Search in Google Scholar

[17] Vasilescu, A., Suciu, G., Suciu, V. Monitoring the Danube with Adcon Telemetry Equipment - a Case Study for OTT Hydromet and Rowater Company // Proceedings of the 2nd International Conference on “Water Resources and Wetlands”, WATER2014, Vancouver, 2014, pp. 221-230. Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo