Uneingeschränkter Zugang

Diversity of Soil Microbial Communities from an Iron Mining Area (Oued Zem, Morocco)


Zitieren

[1] Wang, Q., Wang, R., Tian, C., Yu, Y., Zhang, Y., Dai, J. (2012): Using microbial community functioning as the complementary environmental condition indicator: A case study of an iron deposit tailing area. European Journal of Soil Biology, 51, pp. 22-29.10.1016/j.ejsobi.2012.03.004Search in Google Scholar

[2] Xu, L., Luo, M., Li, W., Wei, X., Xie, K., Liu, L., Jiang, C., Liu, H. (2011): Reduction of hexavalent chromium by Pannonibacter phragmitetus LSSE-09 stimulated with external electron donors under alkaline conditions. Journal of Hazardous Materials, 185, pp. 1169-1176.10.1016/j.jhazmat.2010.10.02821041020Search in Google Scholar

[3] Qiu, J.H., Zhang, Y.W., Zhang, Y.T., Zhang, H.Q., Liu, J.D. (2011): Synthesis and antibacterial activity of copper- immobilized membrane comprising grafted poly (4-vinylpyridine) chains. Journal of Colloid and Interface Science, 354, pp. 152-159.10.1016/j.jcis.2010.09.09021084093Search in Google Scholar

[4] Van Elsas, J.D., Trevors, J.T., Wellington, E.M.H. (1997): Modern soil microbiology. New York: Marcel Dekker; 683 p.Search in Google Scholar

[5] Amico, E.D., Cavalca, L., Andreoni, V. (2005): Analysis of rhizobacterial communities in perennial Graminaceae from polluted water meadow soil, and screening of metal-resistant, potentially plant growth-promoting bacteria. FEMS Microbiology Ecology, 52, pp. 153-162.10.1016/j.femsec.2004.11.00516329902Search in Google Scholar

[6] Bloem, J., Veninga, M., Sheppard, J. (1995): Fully automated determination of soil bacterium numbers, cell volumes, and frequencies of dividing cells by confocal laser scanning microscopy and image analysis. Applied and Environmental Microbiology, 61, pp. 926-936.10.1128/aem.61.3.926-936.1995138837516534976Search in Google Scholar

[7] Li, Z., Xu, J., Tang, C., Wu, J., Muhammad, A., Wang, H. (2006): Application of 16S rDNA-PCR amplification and DGGE fingerprinting for detection of shift in microbial community diversity in Cu-, Zn-, and Cd-contaminated paddy soils. Chemosphere, 62, pp. 1374-80.10.1016/j.chemosphere.2005.07.05016216305Search in Google Scholar

[8] Borneman, J., Skroch, P.W., O’Sullivan, K.M., Palus, J.A., Rumjanek, N.G., Jansen, J.L., Nienhuis, J., Triplett, E.W. (1996): Molecular microbial diversity of an agricultural soil in Wisconsin. Applied and Environmental Microbiology, 62, pp. 1935-1943.10.1128/aem.62.6.1935-1943.19961679718787391Search in Google Scholar

[9] Hugenholtz, P., Goebel, B.M., Pace, N.R. (1998): Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. Journal of Bacteriology, 180, pp. 4765-4774.10.1128/JB.180.18.4765-4774.19981074989733676Search in Google Scholar

[10] Muyzer, G., de Waal, E.C., Uitterlinden, A.G. (1993): Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 59, pp. 695-700.10.1128/aem.59.3.695-700.19932021767683183Search in Google Scholar

[11] De Oliveira, V.M., Manfio, G.P., Da Costa Coutinho, H.L., Keijzer-Wolters, A.C., Van Elsas, J.D. (2006): A ribosomal RNA gene intergenic spacer based PCR and DGGE fingerprinting method for the analysis of specific rhizobial communities in soil. Journal of Microbiological Methods, 64, pp. 366-379.10.1016/j.mimet.2005.05.01516014316Search in Google Scholar

[12] Rombaut, G., Uantika, G.S., Boon, N., Maertens, S., Dhert, P., Top, E.M., Sorgeloos, P., Verstraete, W. (2001): Monitoring of the evolving diversity of the microbial community present in rotifer cultures. Aquaculture, 198, pp. 237-252.10.1016/S0044-8486(01)00594-4Search in Google Scholar

[13] Nouri, M., Gonçalves, F., Sousa, J.P., Römbke, J., Ksibi, M., Pereira, R., Haddioui, A. (2014): Metal concentrations and metal mobility in Ait Ammar Moroccan mining site. Journal of Materials and Environmental Science, 5, pp. 271-280.Search in Google Scholar

[14] Nouri, M., Gonçalves, F., Sousa, J.P., Römbke, J., Ksibi, M., Pereira, R., Haddioui, A. (2013): Metal Uptake by Spontaneous Vegetation in an abandoned iron mine from a Semiarid Area in Center Morocco: Implications for Phytoextraction. Environmental Research, Engineering and Management, 64, pp. 59-71.10.5755/j01.erem.64.2.3866Search in Google Scholar

[15] Gomes, N.C.M., Borges, L.R., Paranhos, R., Pinto, F.N., Mendoça-Hagler, F.N., Smalla, K. (2008): Exploring the diversity of bacterial communities in sediments of urban mangrove forests. FEMS Microbiology Ecology, 66, pp. 96-109.10.1111/j.1574-6941.2008.00519.xSearch in Google Scholar

[16] Gomes, N.C.M., Heuer, H., Schonfeld, J., Costa, R., Mendonc- a-Hagler, L., Smalla, K. (2001): Bacterial diversity of the rhizosphere of maize (Zea mays) grownin tropical soil studied by temperature gradient gel electrophoresis. Plant and Soil, 232, pp. 167-180.10.1023/A:1010350406708Search in Google Scholar

[17] Cawthorn, D.M., Botha, S., Witthuhn, R.C. (2008): Evaluation of different methods for the detection and identification of Enterobacter sakazakii isolated from South African infant formula milks and the processing environment. International Journal of Food Microbiology, 127, pp. 129-138.10.1016/j.ijfoodmicro.2008.06.024Search in Google Scholar

[18] Nogueira, V., Lopes, I., Rocha-Santos, T., Santos, A.L., Rasteiro, G.M., Antunes, F., Gonçalves, F., Soares, A.M.V.M., Cunha, A., Almeida, A., Gomes, N.C.M., Pereira, R. (2012): Impact of organic and inorganic nanomaterials in the soil microbial community structure. Science of the Total Environment, 424, pp. 344-350.10.1016/j.scitotenv.2012.02.041Search in Google Scholar

[19] Heuer, H., Krsek, M., Baker, P., Smalla, K., Wellington, E. (1997): Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Applied and Environment Microbiology, 63, pp. 3233-3241.10.1128/aem.63.8.3233-3241.1997Search in Google Scholar

[20] Garau, G., Castaldi, P., Santona, L., Deiana, P., Melis, P. (2007): Influence of red mud, zeolite and lime on heavy metal immobilization, culturable heterotrophic microbial populations and enzyme activities in a contaminated soil. Geoderma, 142, pp. 47-57.10.1016/j.geoderma.2007.07.011Search in Google Scholar

[21] Azur Environmental (1998): Microtox Basic Solid- phase Test (Basic SPT). CA, USA. Search in Google Scholar

[22] Mamindy-Pajany, Y., Hurel, C., Geret, F., Roméo, M., Marmier, N. (2013): Comparison of mineral-based amendments for ex-situ stabilization of trace elements (As, Cd, Cu, Mo, Ni, Zn) in marine dredged sediments: A pilot-scale experiment. Journal of Hazardous Materials, 252-253, pp. 213-219.10.1016/j.jhazmat.2013.03.001Search in Google Scholar

[23] Zak, J.C., Willig, M.R., Moorhead, D.L., Wildman, H.G. (1994): Functional diversity of microbial communities: a quantitative approach. Soil Biology and Biochemistry, 26, pp. 1101-1108.10.1016/0038-0717(94)90131-7Search in Google Scholar

[24] Doherty, F.G. (2001): A Review of the Microtox® Toxicity Test System for Assessing the Toxicity of Sediments and Soils. Water Quality Research Journal Of Canada, 36, pp. 475-518.10.2166/wqrj.2001.027Search in Google Scholar

[25] Guerra, R., Pasteris, A., Ponti, M., Fabbri, D., Bruzzi, L. (2007): Impact of dredging in a shallow coastal lagoon: Microtox® Basic Solid-Phase Test, trace metals and Corophium bioassay. Environment International, 33, pp. 469-473.10.1016/j.envint.2006.10.006Search in Google Scholar

[26] De Castro-Català, N., Kuzmanovic, M., Roig, N., Jordi Sierra, J., Ginebreda, A., Barceló, D., Pérez, S., Petrovic, M., Picó, Y., Schuhmacher, M., Muñoz, I. (2016): Ecotoxicity of sediments in rivers: Invertebrate community, toxicity bioassays and the toxic unit approach as complementary assessment tools. Science of the Total Environment, 540, pp. 297-306.10.1016/j.scitotenv.2015.06.071Search in Google Scholar

[27] Xue, D., Yao, H.Y., Ge, D.Y., Huang, C.Y. (2008): Soil microbial community structure in diverse land use systems: A comparative study using Biolog, DGGE and PLFA analyses. Pedosphere, 18, pp. 653-663.10.1016/S1002-0160(08)60060-0Search in Google Scholar

[28] Cycoń, M., Markowicz, A., Piotrowska-Seget, Z. (2013): Structural and functional diversity of bacterial community in soil treated with the herbicide napropamide estimated by the DGGE, CLPP and r/K-strategy approaches. Applied Soil Ecology, 72, pp. 242-250.10.1016/j.apsoil.2013.07.015Search in Google Scholar

[29] Mulling, B.T.M., Soeter, A.M., Van der Geest, H.G., Admiraal, W. (2014): Changes in the planktonic microbial community during residence in a surface flow constructed wetland used for tertiary wastewater treatmen. Science of the Total Environment, 466-467, pp. 881-887.10.1016/j.scitotenv.2013.07.103Search in Google Scholar

[30] Girvan, M.S., Bullimore, J., Pretty, J.N., Osborn, A.M., Ball, A.S. (2003): Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soil. Applied and environmental microbiology, 69, pp. 1800-1809.10.1128/AEM.69.3.1800-1809.2003Search in Google Scholar

[31] Landesman, W.J., Nelson, D.M., Fitzpatrick, M.C. (2014): Soil properties and tree species drive b-diversity f soil bacterial communities. Soil Biology and Biochemistry, 76, pp. 201-209.10.1016/j.soilbio.2014.05.025Search in Google Scholar

[32] Ma, X., Zuo, H., Tian, M., Zhang, L., Meng, J., Zhou, X., Min, N., Chang, X., Liu, L. (2016): Assessment of heavy metals contamination in sediments from three adjacent regions of the Yellow River using metal chemical fractions and multivariate analysis techniques. Chemosphere, 144, pp. 264-272.10.1016/j.chemosphere.2015.08.026Search in Google Scholar

[33] Cao, R.X., Ma, L.Q., Chen, M., Singh, S.P., Harris, W.G. (2003): Phosphate-induced metal immobilization in a contaminated site. Environmental Pollution, 122, pp. 19-28.10.1016/S0269-7491(02)00283-XSearch in Google Scholar

[34] Chen, S.B., Zhua, Y.G., Ma, Y.B. (2006): The effect of grain size of rock phosphate amendment on metal immobilization in contaminated soils. Journal of Hazardous Materials, 134, pp. 74-79.10.1016/j.jhazmat.2005.10.027Search in Google Scholar

[35] Komárek, M., Vanĕk, A., Ettler, V. (2013): Chemical stabilization of metals and arsenic in contaminated soils using oxides. Environmental Pollution, 172, pp. 9-22.10.1016/j.envpol.2012.07.045Search in Google Scholar

[36] Garau, G., Silvetti, M., Castaldi, P., Mele, E., Deiana, P., Deiana, S. (2014): Stabilising metal(loid)s in soil with iron and aluminium-based products: Microbial, biochemical and plant growth impact. Journal of Environmental Management, 139, pp. 146-153.10.1016/j.jenvman.2014.02.024Search in Google Scholar

[37] Berg, J., Brandt, K.K., Al-Soud, W.A., Holm, P.E., Hansen, L.H. Sørensen, S.J., Nybroe, O. (2012): Selection for Cu-tolerant bacterial communities with altered composition, but unaltered richness, via long-term Cu exposure. Applied and Environmental Microbiology, 78, pp. 7438-7446.10.1128/AEM.01071-12Search in Google Scholar

[38] Chodak, M., Gołębiewski, M., Morawska-Płoskonka, J., Kuduk, K., Niklińska, M. (2013): Diversity of microorganisms from forest soils differently polluted with heavy metals. Applied Soil Ecology, 64, pp. 7-14.10.1016/j.apsoil.2012.11.004Search in Google Scholar

[39] Bååth, E. (1989): Effects of heavy metals in soil on microbial processes and populations. Water, Air, & Soil Pollution, 47, pp. 335-379.10.1007/BF00279331Search in Google Scholar

[40] Hu, Q., Qi, H.Y., Zeng, J.H., Zhang, H.X. (2007): Bacterial diversity in soils around a lead and zinc mine. Journal of environmental sciences, 19, pp. 74-79.10.1016/S1001-0742(07)60012-6Search in Google Scholar

[41] Zhu, J., Zhang, J., Li, Q., Han, T., Xie, J., Hu, Y., Chai, L. (2013): Phylogenetic analysis of bacterial community composition in sediment contaminated with multiple heavy metals from the Xiangjiang River in China. Marine pollution bulletin, 70, pp. 134-139.10.1016/j.marpolbul.2013.02.02323507235Search in Google Scholar

[42] Fritze, H., Perkiömäki, J., Saarela, U., Katainen, R., Tikka, P., Yrjälä, K., Karp, M., Haimi, J., Romantschuk, M. (2000): Effect of Cd-containing wood ash on the microflora of contiferous forest humus. FEMS Microbiology Ecology, 32, pp. 43-51.10.1111/j.1574-6941.2000.tb00697.x10779618Search in Google Scholar

[43] Reis, M.P., Barbosa, F.A.R., Chartone-Souza, E., Nascimento, A.M.A. (2013): The prokaryotic community of a historically mining-impacted tropical stream sediment is as diverse as that from a pristine stream sediment. Extremophiles, 17, pp. 301-309.10.1007/s00792-013-0517-923389654Search in Google Scholar

[44] Bouskill, N., Barker-Finkel, J., Galloway, T.S., Handy, R.D., Ford, T.E. (2010): Temporal bacterial diversity associated with metal-contaminated river sediments. Ecotoxicology, 19, pp. 317-328.10.1007/s10646-009-0414-219771511Search in Google Scholar

[45] Roesch, L.F.W., Fulthorpe, R.R., Riva, A., Casella, G., Hadwin, A.K., Kent, A.D., Daroub, S.H., Camargo, F.A., Farmerie, W.G., Triplett, E.W. (2007): Pyrosequencing enumerates and contrasts soil microbial diversity. International Society for Microbial Ecology Journal, 1, pp. 283-290.10.1038/ismej.2007.53297086818043639Search in Google Scholar

[46] Sun, M.Y., Dafforn, K.A., Johnston, E.L., Brown, M.V. (2013): Core sediment bacteria drive community response to anthropogenic contamination over multiple environmental gradients. Environmental Microbiology, 15, pp. 2517-2531.10.1111/1462-2920.1213323647974Search in Google Scholar

[47] Xu, P., Zeng, G.M., Huang, D.L., Feng, C.L., Hu, S., Zhao, M.H., Lai, C., Wei, Z., Huang, C., Xie, G.X., Liu, Z.F. (2012): Use of iron oxide nanomaterials in wastewater treatment: a review. Science of the Total Environment, 424, pp. 1-10.10.1016/j.scitotenv.2012.02.02322391097Search in Google Scholar

[48] Cundy, A.B., Hopkinson, L., Whitby, R.L.D. (2008): Use of iron-based technologies in contaminated land and groundwater remediation: a review. Science of the Total Environment, 400, pp. 42-51.10.1016/j.scitotenv.2008.07.00218692221Search in Google Scholar

[49] He, S., Zhang, Y., Gu, N., Feng, Y., Lin, X., Ren, H. (2011): The impact of iron oxide magnetic nanoparticles on the soil bacterial community. Journal of Soils and Sediments, 11, pp. 1408-1417.10.1007/s11368-011-0415-7Search in Google Scholar

[50] Kunito, T., Saeki, K., Oyaizu, H., Matsumoto, S. (1999): Influences of copper forms on the toxicity to microorganisms in soils. Ecotoxicology and environmental safety, 44, pp. 174-181.10.1006/eesa.1999.182010571464Search in Google Scholar

[51] Silver, S., Phung, L.T. (1996): Bacterial heavy metal resistance: new surprises. Annual review of microbiology, 50, pp. 753-89. 10.1146/annurev.micro.50.1.7538905098Search in Google Scholar

[52] Gadd, G.M., Griffiths, A.J. (1977): Microorganisms and heavy metal toxicity. Microbial ecology, 4, pp. 303-317.10.1007/BF0201327424232222Search in Google Scholar

[53] Nowack, B. (2008): Chelating agents and the environment. Environmental Pollution, 153, pp. 1-2.10.1016/j.envpol.2007.12.01618336972Search in Google Scholar

[54] Moore, C.M., Gaballa, A., Hui, M., Ye, R.W., Helmann, J.D. (2005): Genetic and physiological responses of Bacillus subtilis to metal ion stress. Molecular Microbiology, 57, pp. 27-40.10.1111/j.1365-2958.2005.04642.xSearch in Google Scholar

[55] Avery, S.V. (2001): Metal toxicity in yeast and the role of oxidative stress. Advances in Applied Microbiology, 49, pp. 111-142.10.1016/S0065-2164(01)49011-3Search in Google Scholar

[56] Koechler, S., Farasin, J., Cleiss-Arnold, J., Arsène-Ploetze, F. (2015): Toxic metal resistance in biofilms: Diversity of microbial responses and their evolution. Research in Microbiology, 166, pp. 764-773.10.1016/j.resmic.2015.03.00825869223Search in Google Scholar

[57] Schue, M., Fekete, A., Ortet, P., Brutesco, C., Heulin, T., Schmitt-Kopplin, P., Achouak, W., Santaella, C. (2011): Modulation of metabolism and switching to biofilm prevail over exopolysaccharide production in the response of Rhizobium alamii to cadmium. PLoS ONE 6, e26771.10.1371/journal.pone.0026771321252722096497Search in Google Scholar

eISSN:
1854-7400
Sprache:
Englisch