Uneingeschränkter Zugang

Electrotransfer of plasmid DNA radiosensitizes B16F10 tumors through activation of immune response


Zitieren

Yarmush ML, Golberg A, Serša G, Kotnik T, Miklavčič D. Electroporationbased technologies for medicine: principles, applications, and challenges. Annu Rev Biomed Eng 2014; 16: 295-320. 10.1146/annurev-bioeng-071813-104622YarmushMLGolbergASeršaGKotnikTMiklavčičD.Electroporationbased technologies for medicine: principles, applications, and challengesAnnu Rev Biomed Eng20141629532010.1146/annurev-bioeng-071813-10462210.1146/annurev-bioeng-071813-104622Search in Google Scholar

Hribernik A, Cemazar M, Sersa G, Bosnjak M, Snoj M. Effectiveness of electrochemotherapy after IFN-α adjuvant therapy of melanoma patients. Radiol Oncol 2016; 50: 21-7. 10.1515/raon-2015-0048HribernikACemazarMSersaGBosnjakMSnojM.Effectiveness of electrochemotherapy after IFN-α adjuvant therapy of melanoma patientsRadiol Oncol20165021710.1515/raon-2015-004810.1515/raon-2015-0048Search in Google Scholar

Campana LG, Clover AJ, Valpione S, Quaglino P, Gehl J, Kunte C, et al. Recommendations for improving the quality of reporting clinical electro-chemotherapy studies based on qualitative systematic review. Radiol Oncol 2016; 50: 1-13. 10.1515/raon-2016-0006CampanaLGCloverAJValpioneSQuaglinoPGehlJKunteCRecommendations for improving the quality of reporting clinical electro-chemotherapy studies based on qualitative systematic reviewRadiol Oncol20165011310.1515/raon-2016-000610.1515/raon-2016-0006Search in Google Scholar

Cemazar M, Golzio M, Sersa G, Rols MP, Teissié J. Electrically-assisted nucleic acids delivery to tissues in vivo: where do we stand? Curr Pharm Des 2006; 12: 3817-25. 10.2174/138161206778559740CemazarMGolzioMSersaGRolsMPTeissiéJ.Electrically-assisted nucleic acids delivery to tissues in vivo: where do we stand?Curr Pharm Des20061238172510.2174/13816120677855974010.2174/138161206778559740Search in Google Scholar

Heller R, Heller LC. Gene electrotransfer clinical trials. Adv Genet 2015; 89: 235-62. 10.1016/bs.adgen.2014.10.006HellerRHellerLC.Gene electrotransfer clinical trialsAdv Genet2015892356210.1016/bs.adgen.2014.10.00610.1016/bs.adgen.2014.10.006Search in Google Scholar

Heller LC, Heller R. Electroporation gene therapy preclinical and clinical trials for melanoma. Curr Gene Ther 2010; 10: 312-7. 10.2174/156652310791823489HellerLCHellerR.Electroporation gene therapy preclinical and clinical trials for melanomaCurr Gene Ther201010312710.2174/15665231079182348910.2174/156652310791823489Search in Google Scholar

Daud AI, DeConti RC, Andrews S, Urbas P, Riker AI, Sondak VK, et al. Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J Clin Oncol 2008; 26: 5896-903. 10.1200/JCO.2007.15.6794DaudAIDeContiRCAndrewsSUrbasPRikerAISondakVKPhase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanomaJ Clin Oncol200826589690310.1200/JCO.2007.15.679410.1200/JCO.2007.15.6794Search in Google Scholar

Spanggaard I, Snoj M, Cavalcanti A, Bouquet C, Sersa G, Robert C, et al. Gene electrotransfer of plasmid antiangiogenic metargidin peptide (AMEP) in disseminated melanoma: safety and efficacy results of a phase I first-in-man study. Hum Gene Ther Clin Dev 2013; 24: 99-107. 10.1089/humc.2012.240SpanggaardISnojMCavalcantiABouquetCSersaGRobertCGene electrotransfer of plasmid antiangiogenic metargidin peptide (AMEP) in disseminated melanoma: safety and efficacy results of a phase I first-in-man studyHum Gene Ther Clin Dev2013249910710.1089/humc.2012.24010.1089/humc.2012.240Search in Google Scholar

Heller L, Todorovic V, Cemazar M. Electrotransfer of single-stranded or double-stranded DNA induces complete regression of palpable B16.F10 mouse melanomas. Cancer Gene Ther 2013; 20: 695-700. 10.1038/cgt.2013.71HellerLTodorovicVCemazarM.Electrotransfer of single-stranded or double-stranded DNA induces complete regression of palpable B16.F10 mouse melanomasCancer Gene Ther20132069570010.1038/cgt.2013.7110.1038/cgt.2013.71Search in Google Scholar

Znidar K, Bosnjak M, Cemazar M, Heller LC. Cytosolic DNA sensor upregulation accompanies DNA electrotransfer in B16.F10 melanoma cells. Mol Ther Nucleic Acids 2016; 5 : e322. 10.1038/mtna.2016.34ZnidarKBosnjakMCemazarMHellerLC.Cytosolic DNA sensor upregulation accompanies DNA electrotransfer in B16.F10 melanoma cellsMol Ther Nucleic Acids20165e32210.1038/mtna.2016.3410.1038/mtna.2016.34Search in Google Scholar

Desmet CJ, Ishii KJ. Nucleic acid sensing at the interface between innate and adaptive immunity in vaccination. Nat Rev Immunol 2012; 12: 479-91. 10.1038/nri3247DesmetCJIshiiKJ.Nucleic acid sensing at the interface between innate and adaptive immunity in vaccinationNat Rev Immunol2012124799110.1038/nri324710.1038/nri3247Search in Google Scholar

Baskar R, Ann-Lee K, Yeo R, Yeoh KW. Cancer and radiation therapy: current advances and future directions. Int J Med Sci 2012; 9: 193-9. 10.7150/ijms.3635BaskarRAnn-LeeKYeoRYeohKW.Cancer and radiation therapy: current advances and future directionsInt J Med Sci20129193910.7150/ijms.363510.7150/ijms.3635Search in Google Scholar

Demaria S, Golden EB, Formenti SC. Role of local radiation therapy in cancer immunotherapy. JAMA Oncol 2015; 1: 1-8. 10.1001/jamaoncol.2015.2756DemariaSGoldenEBFormentiSC.Role of local radiation therapy in cancer immunotherapyJAMA Oncol201511810.1001/jamaoncol.2015.275610.1001/jamaoncol.2015.2756Search in Google Scholar

Deng L, Liang H, Xu M, Yang X, Burnette B, Arina A, et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 2014; 41: 543-52. 10.1016/j.immuni.2014.10.019DengLLiangHXuMYangXBurnetteBArinaASTING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumorsImmunity2014415435210.1016/j.immuni.2014.10.01910.1016/j.immuni.2014.10.019Search in Google Scholar

Deng L, Liang H, Fu S, R.weichselbaum R, Fu YX. From DNA damage to nucleic acid sensing: A strategy to enhance radiation therapy. Clin Cancer Res 2016; 22: 20-5. 10.1158/1078-0432.CCR-14-3110DengLLiangHFuSweichselbaumR.RFuYX.From DNA damage to nucleic acid sensing: A strategy to enhance radiation therapyClin Cancer Res20162220510.1158/1078-0432.CCR-14-311010.1158/1078-0432.CCR-14-3110Search in Google Scholar

El Kaffas A, Tran W, Czarnota GJ. Vascular strategies for enhancing tumour response to radiation therapy. Technol Cancer Res Treat 2012; 11: 421-32. 10.7785/tcrt.2012.500265El KaffasATranWCzarnotaGJ.Vascular strategies for enhancing tumour response to radiation therapyTechnol Cancer Res Treat2012114213210.7785/tcrt.2012.50026510.7785/tcrt.2012.500265Search in Google Scholar

Sedlar A, Kranjc S, Dolinsek T, Cemazar M, Coer A, Sersa G. Radiosensitizing effect of intratumoral interleukin-12 gene electrotransfer in murine sarcoma. BMC cancer 2013; 13: 38. 10.1186/1471-2407-13-38SedlarAKranjcSDolinsekTCemazarMCoerASersaG.Radiosensitizing effect of intratumoral interleukin-12 gene electrotransfer in murine sarcomaBMC cancer2013133810.1186/1471-2407-13-3810.1186/1471-2407-13-38Search in Google Scholar

Stimac M, Kamensek U, Cemazar M, Kranjc S, Coer A, Sersa G. Tumor radio-sensitization by gene therapy against endoglin. Cancer Gene Ther 2016; 23: 214-20. 10.1038/cgt.2016.20StimacMKamensekUCemazarMKranjcSCoerASersaG.Tumor radio-sensitization by gene therapy against endoglinCancer Gene Ther2016232142010.1038/cgt.2016.2010.1038/cgt.2016.20Search in Google Scholar

Dolinsek T, Markelc B, Bosnjak M, Blagus T, Prosen L, Kranjc S, et al. Endoglin silencing has significant antitumor effect on murine mammary adenocarcinoma mediated by vascular targeted effect. Curr Gene Ther 2015; 15: 228 44. 10.2174/156652321566615012611 5501DolinsekTMarkelcBBosnjakMBlagusTProsenLKranjcSEndoglin silencing has significant antitumor effect on murine mammary adenocarcinoma mediated by vascular targeted effectCurr Gene Ther2015152284410.2174/156652321566615012611 550110.2174/1566523215666150126115501Search in Google Scholar

Dolinsek T, Markelc B, Sersa G, Coer A, Stimac M, Lavrencak J, et al. Multiple delivery of siRNA against endoglin into murine mammary adenocarcinoma prevents angiogenesis and delays tumor growth. PLoS One 2013; 8: e58723. 10.1371/journal.pone.0058723DolinsekTMarkelcBSersaGCoerAStimacMLavrencakJMultiple delivery of siRNA against endoglin into murine mammary adenocarcinoma prevents angiogenesis and delays tumor growthPLoS One20138e5872310.1371/journal.pone.005872310.1371/journal.pone.0058723Search in Google Scholar

Stimac M, Dolinsek T, Lampreht U, Cemazar M, Sersa G. Gene electrotransfer of plasmid with tissue specific promoter encoding shRNA against endoglin exerts antitumor efficacy against murine TS/A tumors by vascular targeted effects. PLoS One 2015; 10: e0124913. 10.1371/journal. pone.0124913StimacMDolinsekTLamprehtUCemazarMSersaG.Gene electrotransfer of plasmid with tissue specific promoter encoding shRNA against endoglin exerts antitumor efficacy against murine TS/A tumors by vascular targeted effectsPLoS One201510e012491310.1371/journal. pone.012491310.1371/journal.pone.0124913Search in Google Scholar

Tesic N, Kamensek U, Sersa G, Kranjc S, Stimac M, Lampreht U, et al. Endoglin (CD105) Silencing mediated by shrna under the control of endothelin-1 promoter for targeted gene therapy of melanoma. Mol Ther Nucleic Acids 2015; 4: e239. 10.1038/mtna.2015.12TesicNKamensekUSersaGKranjcSStimacMLamprehtUEndoglin (CD105) Silencing mediated by shrna under the control of endothelin-1 promoter for targeted gene therapy of melanomaMol Ther Nucleic Acids20154e23910.1038/mtna.2015.1210.1038/mtna.2015.12Search in Google Scholar

Dolinsek T, Sersa G, Prosen L, Bosnjak M, Stimac M, Razborsek U, et al. Electrotransfer of plasmid DNA encoding an anti-mouse endoglin (CD105) shRNA to B16 melanoma tumors with low and high metastatic potential results in pronounced anti-tumor effects. Cancers 2015; 8: 3. 10.3390/ cancers8010003DolinsekTSersaGProsenLBosnjakMStimacMRazborsekUElectrotransfer of plasmid DNA encoding an anti-mouse endoglin (CD105) shRNA to B16 melanoma tumors with low and high metastatic potential results in pronounced anti-tumor effectsCancers20158310.3390/ cancers801000310.3390/cancers8010003Search in Google Scholar

Papadakis ED, Nicklin S a, Baker a H, White SJ. Promoters and control elements: designing expression cassettes for gene therapy. Curr Gene Ther 2004; 4: 89-113. 10.2174/1566523044578077PapadakisEDNicklinS aBakera HWhiteSJ.Promoters and control elements: designing expression cassettes for gene therapyCurr Gene Ther200448911310.2174/156652304457807710.2174/1566523044578077Search in Google Scholar

Bosnjak M, Dolinsek T, Cemazar M, Kranjc S, Blagus T, Markelc B, et al. Gene electrotransfer of plasmid AMEP, an integrin-targeted therapy, has antitumor and antiangiogenic action in murine B16 melanoma. Gene Ther 2015; 22: 578-90. 10.1038/gt.2015.26BosnjakMDolinsekTCemazarMKranjcSBlagusTMarkelcBGene electrotransfer of plasmid AMEP, an integrin-targeted therapy, has antitumor and antiangiogenic action in murine B16 melanomaGene Ther2015225789010.1038/gt.2015.2610.1038/gt.2015.26Search in Google Scholar

Tomayko MM, Reynolds CP. Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother Pharmacol 1989; 24: 148-54. 10.1007/BF00300234TomaykoMMReynoldsCP.Determination of subcutaneous tumor size in athymic (nude) miceCancer Chemother Pharmacol1989241485410.1007/BF0030023410.1007/BF00300234Search in Google Scholar

Kamensek U, Tesic N, Sersa G, Kos S, Cemazar M. Tailor-made fibroblast-specific and antibiotic-free interleukin 12 plasmid for gene electrotransfermediated cancer immunotherapy. Plasmid 2016; 89: 9-15. 10.1016/j. plasmid.2016.11.004KamensekUTesicNSersaGKosSCemazarM.Tailor-made fibroblast-specific and antibiotic-free interleukin 12 plasmid for gene electrotransfermediated cancer immunotherapyPlasmid20168991510.1016/j. plasmid.2016.11.00410.1016/j.plasmid.2016.11.004Search in Google Scholar

Dempsey A, Bowie AG. Innate immune recognition of DNA: A recent history. Virology. 2015; 479: 146-52. 10.1016/j.virol.2015.03.013DempseyABowieAG.Innate immune recognition of DNA: A recent historyVirology20154791465210.1016/j.virol.2015.03.01310.1016/j.virol.2015.03.013Search in Google Scholar

Chiarella P, Fazio VM, Signori E. Electroporation in DNA vaccination protocols against cancer. CurrDrug Metab 2013; 14: 291-9. org/10.2174/156652310791823506ChiarellaPFazioVMSignoriE.Electroporation in DNA vaccination protocols against cancerCurrDrug Metab2013142919org/10.2174/15665231079182350610.2174/1389200211314030004Search in Google Scholar

Muralidharan S, Mandrekar P. Cellular stress response and innate immune signaling: integrating pathways in host defense and inflammation. J Leukoc Biol 2013; 94: 1167-84. 10.1189/jlb.0313153MuralidharanSMandrekarP.Cellular stress response and innate immune signaling: integrating pathways in host defense and inflammationJ Leukoc Biol20139411678410.1189/jlb.031315310.1189/jlb.0313153Search in Google Scholar

Tarek M. Membrane electroporation: A molecular dynamics simulation. Biophys J 2005; 88: 4045-53. 10.1529/biophysj.104.050617TarekM.Membrane electroporation: A molecular dynamics simulationBiophys J20058840455310.1529/biophysj.104.05061710.1529/biophysj.104.050617Search in Google Scholar

Markelc B, Tevz G, Cemazar M, Kranjc S, Lavrencak J, Zegura B, et al. Muscle gene electrotransfer is increased by the antioxidant tempol in mice. Gene Ther 2012; 19: 312-20. 10.1038/gt.2011.97MarkelcBTevzGCemazarMKranjcSLavrencakJZeguraBMuscle gene electrotransfer is increased by the antioxidant tempol in miceGene Ther2012193122010.1038/gt.2011.9710.1038/gt.2011.97Search in Google Scholar

Bolus NE. Basic review of radiation biology and terminology. J Nucl Med Technol 2001; 29: 67-73.BolusNE.Basic review of radiation biology and terminologyJ Nucl Med Technol200129677310.2967/jnmt.117.195230Search in Google Scholar

Watters D. Molecular mechanisms of ionizing radiation-induced apoptosis. Immunol Cell Biol 1999; 77: 263-71. 10.1046/j.1440-1711.1999.00824.xWattersD.Molecular mechanisms of ionizing radiation-induced apoptosisImmunol Cell Biol1999772637110.1046/j.1440-1711.1999.00824.x10.1046/j.1440-1711.1999.00824.xSearch in Google Scholar

Garcia-Barros M, Paris F, Cordon-Cardo C, Lyden D, Rafii S, Haimovitz-Friedman A, et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 2003; 300: 1155-9. 10.1126/science.1082504Garcia-BarrosMParisFCordon-CardoCLydenDRafiiSHaimovitz-FriedmanATumor response to radiotherapy regulated by endothelial cell apoptosisScience20033001155910.1126/science.108250410.1126/science.1082504Search in Google Scholar

Lugade AA, Moran JP, Gerber SA, Rose RC, Frelinger JG, Lord EM. Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. J Immunol 2005; 174: 7516-23. 10.4049/jimmunol.174.12.7516LugadeAAMoranJPGerberSARoseRCFrelingerJGLordEM.Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumorJ Immunol200517475162310.4049/jimmunol.174.12.751610.4049/jimmunol.174.12.7516Search in Google Scholar

Lee Y, Auh SL, Wang Y, Burnette B, Wang Y, Meng Y, et al. Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood 2009; 114: 589-95. 10.1182/ blood-2009-02-206870LeeYAuhSLWangYBurnetteBWangYMengYTherapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatmentBlood20091145899510.1182/ blood-2009-02-20687010.1182/blood-2009-02-206870Search in Google Scholar

Sersa G, Kranjc S, Cemažar M. Improvement of combined modality therapy with cisplatin and radiation using electroporation of tumors. Int J Radiat Oncol Biol Phys 2000; 46: 1037-41. 10.1016/S0360-3016(99)00464-2SersaGKranjcSCemažarM.Improvement of combined modality therapy with cisplatin and radiation using electroporation of tumorsInt J Radiat Oncol Biol Phys20004610374110.1016/S0360-3016(99)00464-210.1016/S0360-3016(99)00464-2Search in Google Scholar

Bonnafous P, Vernhes MC, Teissié J, Gabriel B. The generation of reactive-oxygen species associated with long-lasting pulse-induced electropermeabilisation of mammalian cells is based on a non-destructive alteration of the plasma membrane. Biochim Biophys Acta 1999; 1461: 123-34. 10.1016/S0005-2736(99)00154-6BonnafousPVernhesMCTeissiéJGabrielB.The generation of reactive-oxygen species associated with long-lasting pulse-induced electropermeabilisation of mammalian cells is based on a non-destructive alteration of the plasma membraneBiochim Biophys Acta199914611233410.1016/S0005-2736(99)00154-610.1016/S0005-2736(99)00154-6Search in Google Scholar

Maio M. Melanoma as a model tumour for immuno-oncology. Ann Oncol 2012; 23: 10-4. 10.1093/annonc/mds257MaioM.Melanoma as a model tumour for immuno-oncologyAnn Oncol20122310410.1093/annonc/mds25710.1093/annonc/mds257Search in Google Scholar

Ratterman M, Hallmeyer S, Richards J. Sequencing of new and old therapies for metastatic melanoma. Curr Treat Options Oncol 2016; 17: 1-9. 10.1007/s11864-016-0427-zRattermanMHallmeyerSRichardsJ.Sequencing of new and old therapies for metastatic melanomaCurr Treat Options Oncol2016171910.1007/s11864-016-0427-z10.1007/s11864-016-0427-zSearch in Google Scholar

Blankenstein T, Coulie PG, Gilboa E, Jaffee EM. The determinants of tumour immunogenicity. Nat Rev Cancer 2012; 12: 307-13. 10.1038/nrc3246BlankensteinTCouliePGGilboaEJaffeeEM.The determinants of tumour immunogenicityNat Rev Cancer2012123071310.1038/nrc324610.1038/nrc3246Search in Google Scholar

eISSN:
1581-3207
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Medizin, Klinische Medizin, Radiologie, Allgemeinmedizin, Innere Medizin, Hämatologie, Onkologie