Uneingeschränkter Zugang

Extended Elliptic Mild Slope Equation Incorporating the Nonlinear Shoaling Effect

Polish Maritime Research's Cover Image
Polish Maritime Research
Special Issue Title: Marine Processes Studies and Marine Engineering

Zitieren

1. Akbarpour Jannat, M. R., & Asano, T. (2007). External forces of sediment transport in surf and swash zones induced by wave groups and their associated long waves. Coastal Engineering Journal, 49(02), 205-227.10.1142/S0578563407001575Search in Google Scholar

2. Berkhoff, J. C. W., Booy, N., & Radder, A. C. (1982). Verification of numerical wave propagation models for simple harmonic linear water waves. Coastal Engineering, 6(3), 255-279.10.1016/0378-3839(82)90022-9Search in Google Scholar

3. Cerrato, A., Gonzalez, J. A., & Rodriguez-Tembleque, L. (2016). Boundary element formulation of the Mild-Slope equation for harmonic water waves propagating over unidirectional variable bathymetries. Engineering Analysis with Boundary Elements, 62, 22-34.10.1016/j.enganabound.2015.09.006Search in Google Scholar

4. Chang, G., Ruehl, K., Jones, C. A., Roberts, J., & Chartrand, C. (2016). Numerical modeling of the effects of wave energy converter characteristics on nearshore wave conditions. Renewable Energy, 89, 636-648.10.1016/j.renene.2015.12.048Search in Google Scholar

5. Chella, M. A., Bihs, H., Myrhaug, D., & Muskulus, M. (2015). Hydrodynamic characteristics and geometric properties of plunging and spilling breakers over impermeable slopes. Ocean Modelling.Search in Google Scholar

6. Hamidi, M. E., Hashemi, M. R., Talebbeydokhti, N., & Neill, S. P. (2012). Numerical modelling of the mild slope equation using localised differential quadrature method. Ocean Engineering, 47, 88-103.10.1016/j.oceaneng.2012.03.004Search in Google Scholar

7. [7] Korotkevich, A. O., Dyachenko, A. I., & Zakharov, V. E. (2016). Numerical simulation of surface waves instability on a homogeneous grid. Physica D: Nonlinear Phenomena, 321, 51-66.10.1016/j.physd.2016.02.017Search in Google Scholar

8. [8] Lin, X., & Yu, X. (2015). A finite difference method for effective treatment of mild-slope wave equation subject to non-reflecting boundary conditions. Applied Ocean Research, 53, 179-189.10.1016/j.apor.2015.08.007Search in Google Scholar

9. Li, R. J., Zhang, Y., & Gao, H. S. (2004). A wave nonlinear dispersion relation and its application. Ocean Eng./Haiyang Gongcheng, 22(3), 20-24.Search in Google Scholar

10. Lupieri, G., & Contento, G. (2015). Numerical simulations of 2-D steady and unsteady breaking waves. Ocean Engineering, 106, 298-316.10.1016/j.oceaneng.2015.07.014Search in Google Scholar

11. Maa, J. Y., Hsu, T. W., & Lee, D. Y. (2002). The RIDE model: an enhanced computer program for wave transformation. Ocean Engineering, 29(11), 1441-1458.10.1016/S0029-8018(01)00071-3Search in Google Scholar

12. Nagayama, S. (1983). Study on the change of wave height and energy in the surf zone. Bachelor thesis, Yokohama National University, Japan (in Japanese).Search in Google Scholar

13. Rincon, M. A., & Quintino, N. P. (2016). Numerical analysis and simulation for a nonlinear wave equation. Journal of Computational and Applied Mathematics, 296, 247-264.10.1016/j.cam.2015.09.024Search in Google Scholar

14. Salmon, J. E., & Holthuijsen, L. H. (2015). Modeling depthinduced wave breaking over complex coastal bathymetries. Coastal Engineering, 105, 21-35.10.1016/j.coastaleng.2015.08.002Search in Google Scholar

15. Salmon, J. E., Holthuijsen, L. H., Zijlema, M., van Vledder, G. P., & Pietrzak, J. D. (2015). Scaling depth-induced wavebreaking in two-dimensional spectral wave models. Ocean Modelling, 87, 30-47.10.1016/j.ocemod.2014.12.011Search in Google Scholar

16. Sharma, A., Panchang, V. G., & Kaihatu, J. M. (2014). Modeling nonlinear wave-wave interactions with the elliptic mild slope equation. Applied Ocean Research, 48, 114-125.10.1016/j.apor.2014.08.004Search in Google Scholar

17. Stockdon, H. F., Holman, R. A., Howd, P. A., & Sallenger, A. H. (2006). Empirical parameterization of setup, swash, and runup. Coastal engineering, 53(7), 573-588.10.1016/j.coastaleng.2005.12.005Search in Google Scholar

18. Thompson, D. A., Karunarathna, H., & Reeve, D. (2016). Comparison between wave generation methods for numerical simulation of bimodal seas. Water Science and Engineering, 9(1), 3-13.10.1016/j.wse.2016.02.005Search in Google Scholar

19. Tsai, C. P., Chen, H. B., Hwung, H. H., & Huang, M. J. (2005). Examination of empirical formulas for wave shoaling and breaking on steep slopes. Ocean Engineering, 32(3), 469-483.10.1016/j.oceaneng.2004.05.010Search in Google Scholar

20. Yu, J., & Zheng, G. (2012). Exact solutions for wave propagation over a patch of large bottom corrugations. Journal of Fluid Mechanics, 713, 362-375.10.1017/jfm.2012.460Search in Google Scholar

21. Zhao, L., Panchang, V., Chen, W., Demirbilek, Z., & Chhabbra, N. (2001). Simulation of wave breaking effects in two-dimensional elliptic harbor wave models. Coastal Engineering, 42(4), 359-373.10.1016/S0378-3839(00)00069-7Search in Google Scholar

22. Yoon, BI; Woo, SB. (2013). Tidal asymmetry and flood/ ebb dominance around the Yeomha channel in the Han River Estuary, South Korea. Journal of coastal research, 65, 1242-1246.10.2112/SI65-210.1Search in Google Scholar

23. Chen, M; Han, DF. (2015). Multi-grid model for crowd’s evacuation in ships based on cellular automata. Polish maritime research, 22(1), 75-81. 10.1515/pomr-2015-0036Search in Google Scholar

eISSN:
2083-7429
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere, Geowissenschaften, Atmosphärenkunde und Klimatologie, Biologie