Uneingeschränkter Zugang

Simplified Procedure For The Free Vibration Analysis Of Rectangular Plate Structures With Holes And Stiffeners


Zitieren

1. [1]Reissner E.: The effect of transverse shear deformation on the bending of elastic plate. Transactions of ASME Journal of Applied Mechanics, 12, (1945), pp. 69-7710.1115/1.4009435Search in Google Scholar

2. Mindlin R. D.: Influence of rotary inertia and shear on flexural motions of isotropic elastic plates. Journal of Applied Mechanics, 18, 1(1951), pp. 31-38Search in Google Scholar

3. Liew K. M., Xiang Y., Kitipornchai S.: Research on thick plate vibration: a literature survey. Journal of Sound and Vibration, 180, (1995), pp. 163-176Search in Google Scholar

4. Senjanović I., Vladimir N., Tomić M.: An advanced theory of moderately thick plate vibrations. Journal of Sound and Vibration, 332, (2013), pp. 1868-1880Search in Google Scholar

5. Senjanović I., Tomić M., Vladimir N.: Cho D. S.: Analytical solution for free vibrations of a moderately thick rectangular plate. Mathematical Problems in Engineering, 2013, (2013), Article ID 207460Search in Google Scholar

6. Liew K. M., Xiang Y., Kitipornchai S.: Transverse vibration of thick plates – I. Comprehensive sets of boundary conditions. Computers and Structures, 49, (1993), pp. 1-29Search in Google Scholar

7. Dawe D. J., Roufaeil O. L.: Rayleigh-Ritz vibration analysis of Mindlin plates. Journal of Sound and Vibration, 69, 3(1980), pp. 345-359Search in Google Scholar

8. Kim K.H., Kim B.H., Choi T.M., Cho D.S.: Free vibration analysis of rectangular plate with arbitrary edge constraints using characteristic orthogonal polynomials in assumed mode method. International Journal of Naval Architecture and Ocean Engineering, 4, (2012), pp. 267-280Search in Google Scholar

9. Chung J.H., Chung T.Y., Kim K.C.: Vibration analysis of orthotropic Mindlin plates with edges elastically restrained against rotation. Journal of Sound and Vibration, 163, (1993), pp. 151-163Search in Google Scholar

10. Auricchio F., Taylor R.L.: A triangular thick plate finite element with an exact thin limit. Finite Elements in Analysis and Design, 19, (1995), pp. 57-68Search in Google Scholar

11. Lovadina C.: Analysis of a mixed finite element method for the Reissner-Mindlin plate problems. Computer Methods in Applied Mechanics and Engineering, 163, (1998), pp. 71-8510.1016/S0045-7825(98)00003-6Search in Google Scholar

12. Hughes T.J.R., Tezduyar T.: Finite elements based upon Mindlin plate theory with particular reference to the four-node isoparametric element. Journal of Applied Mechanics, 48, (1981), pp. 587-596Search in Google Scholar

13. Bletzinger K., Bischoff M., Ramm E.: A unified approach for shear-locking free triangular and rectangular shell finite elements. Computers and Structures, 75, (2000), pp. 321-334Search in Google Scholar

14. Nguyen-Xuan H., Liu G. R., Thai-Hong C.: Nguyen-Thoi T. An edge-based smoothed finite element method (ES-FEM) with stabilized discrete shear gap technique for analysis of Reissner-Mindlin plates. Computer Methods in Applied Mechanics and Engineering, 199, (2010), pp. 471-489Search in Google Scholar

15. Senjanović I., Vladimir N., Hadžić N. Modified Mindlin plate theory and shear locking-free finite element formulation. Mechanics Research Communications, 55, (2014), pp. 95-104Search in Google Scholar

16. Cho D.S., Vladimir N., Choi T.M.: Approximate natural vibration analysis of rectangular plates with openings using assumed mode method. International Journal of Naval Architecture and Ocean Engineering, 5, 3(2013), pp. 478-491Search in Google Scholar

17. Paramasivam P.: Free vibration of square plates with openings. Journal of Sound of Vibration, 30, (1973), pp. 173-17810.1016/S0022-460X(73)80111-7Search in Google Scholar

18. Kwak M.K., Han S.: Free vibration analysis of rectangular plate with a hole by means of independent coordinate coupling method. Journal of Sound of Vibration, 306, (2007), pp. 12-30Search in Google Scholar

19. Grossi R.O., del V. Arenas B., Laura P.A.A.: Free vibration of rectangular plates with circular openings. Ocean Engineering, 24, 1(1997), pp. 19-24Search in Google Scholar

20. Monahan L.J., Nemergut P.J., Maddux G.E.: Natural frequencies and mode shapes of plates with interior cut-outs. The Shock and Vibration Bulletin, 41, (1970), pp. 37-49Search in Google Scholar

21. Cho D.S., Vladimir N., Choi T.M.: Natural vibration analysis of stiffened panels with arbitrary edge constraints using the assumed mode method. Proceedings of the IMechE, Part M: Journal of Engineering for the Maritime Environment, (2014), DOI: 10.1177/1475090214521179, published online10.1177/1475090214521179Search in Google Scholar

22. Samanta A., Mukhopadhyay M.: Free vibration analysis of stiffened shells by the finite element technique. European Journal of Mechanics, A Solids, 23, (2004), pp. 159-179Search in Google Scholar

23. Sivasubramonian B., Kulkarni A. M., Rao G.V.; Krishnan A.: Free vibration of curved panels with cutouts. Journal of Sound and Vibration, 200, (1997), pp. 227-234Search in Google Scholar

24. Sivasubramonian B., Rao G.V., Krishnan A.: Free vibration of longitudinally stiffened curved panels with cutout. Journal of Sound and Vibration, 226, 1(1999), pp. 41-55Search in Google Scholar

25. Srivastava A.K.L.: Vibration of stiffened plates with cutout subjected to partial edge loading. Journal of the Institution of Engineers (India) Series A, 93, 2(2012), pp. 129-13510.1007/s40030-012-0018-3Search in Google Scholar

26. MSC. MD Nastran 2010 Dynamic analysis user’s guide. MSC Software, 2010Search in Google Scholar

eISSN:
2083-7429
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Einführungen und Gesamtdarstellungen, andere, Geowissenschaften, Atmosphärenkunde und Klimatologie, Biologie