1. bookVolumen 23 (2017): Heft 2 (June 2017)
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1898-0309
Erstveröffentlichung
30 Dec 2008
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch
Uneingeschränkter Zugang

Automatic segmentation of lesion from breast DCE-MR image using artificial fish swarm optimization algorithm

Online veröffentlicht: 28 Jun 2017
Volumen & Heft: Volumen 23 (2017) - Heft 2 (June 2017)
Seitenbereich: 29 - 36
Eingereicht: 07 Apr 2017
Akzeptiert: 19 May 2017
Zeitschriftendaten
License
Format
Zeitschrift
eISSN
1898-0309
Erstveröffentlichung
30 Dec 2008
Erscheinungsweise
4 Hefte pro Jahr
Sprachen
Englisch

[1] Lehman CD, Schnall MD. Imaging in breast cancer: magnetic resonance imaging. Breast Cancer Res. 2005; 7(5):215-219.10.1186/bcr1309Search in Google Scholar

[2] Herdman R, Norton L, editors. Saving women's lives: strategies for improving breast cancer detection and diagnosis. Washington (DC): National Academies Press; 2005.Search in Google Scholar

[3] Kerlikowske K, Carney PA, Geller B, et al. Performance of screening mammography among women with and without a first-degree relative with breast cancer. Ann Intern Med. 2000;133(11):855-863.10.7326/0003-4819-133-11-200012050-00009Search in Google Scholar

[4] Kolb TM, Lichy J, Newhouse JH. Comparison of the performance of screening mammography, physical examination, and breast us and evaluation of factors that influence them: An analysis of 27,825 patient evaluations. Radiology. 2002;225(1):165-175.10.1148/radiol.2251011667Search in Google Scholar

[5] Bird RE, Wallace TW, Yankaskas BC. Analysis of cancers missed at screening mammography. Radiology. 1992;184(3):613-617.10.1148/radiology.184.3.1509041Search in Google Scholar

[6] Kopans DB. The positive predictive value of mammography. AJR Am J Roentgenol. 1992;158(3):521-526.10.2214/ajr.158.3.1310825Search in Google Scholar

[7] Reiser I, Nishikawa RM, Giger ML, et al. Computerized detection of mass lesions in digital breast tomosynthesis images using twoand three dimensional radial gradient index segmentation. Technol Cancer Res Treat. 2004;3(5):437-441.10.1177/153303460400300504Search in Google Scholar

[8] Pavic D, Koomen M, Kuzmiak C, et al. Ultrasound in the management of breast disease. Curr Womens Health Rep. 2003;3(2):156-164.Search in Google Scholar

[9] Weir L, Worsley D, Bernstein V. The value of FDG positron emission tomography in the management of patients with breast cancer. Breast J. 2005;11(3):204-209.10.1111/j.1075-122X.2005.21625.xSearch in Google Scholar

[10] Eubank WB, Mankoff DA. Evolving role of positron emission tomography in breast cancer imaging. Semin Nucl Med. 2005;35(2):84-99.10.1053/j.semnuclmed.2004.11.001Search in Google Scholar

[11] Sardanelli F, Giuseppetti GM, Panizza P, et al. Sensitivity of MRI versus mammography for detecting foci of multifocal, multicentric breast cancer in fatty and dense breasts using the whole-breast pathologic examination as a gold standard. AJR Am J Roentgenol. 2004;183(4);1149-1157.10.2214/ajr.183.4.1831149Search in Google Scholar

[12] Liberman L, editor. Breast MRI: diagnosis and intervention. Springer; 2005.Search in Google Scholar

[13] Heiberg EV, Perman WH, Herrmann VM, et al. Dynamic sequential 3D gadolinium-enhanced MRI of the whole breast. Magn Reson Imaging. 1996;14(4):337-348.10.1016/0730-725X(95)02112-7Search in Google Scholar

[14] Cardillo FA, Francesco M. Image analysis methods in MRI examinations of the breast. Università di Pisa: Technical Report TR-09-16; 2009.Search in Google Scholar

[15] Coto E, Grimm S. Bruckner S, et.al. MammoExplorer: An advanced CAD application for breast DCE-MRI. In: Proceedings of Vision, Modelling, and Visualization 2005. 2005;91-98.Search in Google Scholar

[16] Sathya DJ, Geetha K. Development of intelligent system based on artificial swarm bee colony clustering algorithm for efficient mass extraction from breast DCE-MR Images. Int J Recent Trends Engineering and Technology. 2011;6(1):82-88.Search in Google Scholar

[17] Sathya DJ, Geetha K. Development of CAD system based on enhanced clustering based segmentation algorithm for detection of masses in breast DCE-MRI. Int J Comput Science Issues. 2011;8(5):378-387.Search in Google Scholar

[18] Liang X, Ramamohanara K, Frazer H, et al. Lesion Segmentation in Dynamic Contrast Enhanced MRI of Breast. 2012 International Conference on Digital Image Computing Techniques and Applications (DICTA). Fremantle, WA. 2012;1-8.Search in Google Scholar

[19] Meinel LA, Buelow T, Huo D, et al. Robust segmentation of mass‐lesions in contrast‐enhanced dynamic breast MR images. Journal of magnetic resonance imaging. 2010;32(1):110-119.10.1002/jmri.22206Search in Google Scholar

[20] Pang Y, Li L, Hu W, Peng Y, et al. Computerized segmentation and characterization of breast lesions in dynamic contrast-enhanced MR images using fuzzy c-means clustering and snake algorithm. Computational and Mathematical Methods in Medicine. 2012. Article ID 634907.10.1155/2012/634907Search in Google Scholar

[21] Baltzer PA, Dietzel M, Kaiser WA. Nonmass lesions in magnetic resonance imaging of the breast: additional T2-weighted images improve diagnostic accuracy. J Comput Assist Tomogr. 2011;35(3):361-366.10.1097/RCT.0b013e31821065c3Search in Google Scholar

[22] Ertaş G, Gülçür HÖ, Osman O, et al. Breast MR segmentation and lesion detection with cellular neural networks and 3D template matching. Computers in biology and medicine. 2008;38(1):116-126.10.1016/j.compbiomed.2007.08.001Search in Google Scholar

[23] Tan Y, Liu L, Liu Q, \et al. Automatic breast DCE-MRI segmentation using compound morphological operations. 2011 4th International Conference on Biomedical Engineering and Informatics (BMEI). Shanghai. 2011;147-150.10.1109/BMEI.2011.6098307Search in Google Scholar

[24] Li XL, Shao ZJ, Qian JX. An optimizing method based on autonomous animats: fish-swarm algorithm. System Engineering Theory and Practice. 2002;22(11):32-38.Search in Google Scholar

[25] Rocha A, Fernandes E, Martins T. Novel fish swarm heuristics for bound constrained global optimization problems. In: Murgante B, Gervasi O, Iglesias A, et al. (eds) Computational Science and Its Applications - ICCSA 2011. ICCSA 2011. Lecture Notes in Computer Science, vol 6784. Springer, Berlin, Heidelberg.10.1007/978-3-642-21931-3_16Search in Google Scholar

[26] He S, Belacel N, Hamam H, et al. Fuzzy clustering with improved artificial fish swarm algorithm. 2009 International Joint Conference on Computational Sciences and Optimization. Sanya, Hainan. 2009;317-321.Search in Google Scholar

[27] Xiao L. A clustering algorithm based on artificial fish school. 2010 2nd International Conference on Computer Engineering and Technology. Chengdu. 2010;V7-766-V7-769.Search in Google Scholar

[28] Zhang M, Shao C, Li M, Sun J. Mining classification rule with artificial fish swarm. 2006 6th World Congress on Intelligent Control and Automation. Dalian. 2006;5877-5881.Search in Google Scholar

[29] Cui G, Cao X, Zhou J, et al. The optimization of DNA encoding sequences based on improved AFS algorithms. 2007 IEEE International Conference on Automation and Logistics. Jinan. 2007;1141-1144.10.1109/ICAL.2007.4338740Search in Google Scholar

[30] Azad MA, Rocha AM, Fernandes EM. Improved binary artificial fish swarm algorithm for the 0-1 multidimensional knapsack problems. Swarm and Evolutionary Computation. 2014;14:66-75.10.1016/j.swevo.2013.09.002Search in Google Scholar

[31] Janaki Sathya D, Geetha K. Comparative study of different edge enhancement filters in spatial domain for magnetic resonance images. AMSE Journal. 2011;54(1):30-43.Search in Google Scholar

[32] Weszka JS. A survey of threshold selection techniques. Computer Graphics and Image Processing. 1978;7(2):259-265.10.1016/0146-664X(78)90116-8Search in Google Scholar

[33] Swets JA. ROC analysis applied to the evaluation of medical imaging techniques. Invest Radiol. 1979;14(2):109-121.10.1097/00004424-197903000-00002478799Search in Google Scholar

[34] Janaki Sathya D, Geetha K. A comparison of certain soft computing techniques for segmentation of ROI from breast DCE-MR Images. Karpagam Journal of Computer Science. 2013;7(3):116-128.Search in Google Scholar

[35] Sathya DJ, Geetha K. Quantitative comparison of artificial honey bee colony clustering and enhanced SOM based K-means clustering algorithms for extraction of ROI from breast DCE-MR images. International Journal on Recent Trends in Engineering and Technology. 2013;8(1):51-56.Search in Google Scholar

Empfohlene Artikel von Trend MD

Planen Sie Ihre Fernkonferenz mit Scienceendo