Uneingeschränkter Zugang

Impact of membrane pore structure on protein detection sensitivity of affinity-based immunoassay


Zitieren

1. Wasunna, A.A. (2007). Health Demands in Developing Country. Pennsylvania, USA: Elsevier B.V.Search in Google Scholar

2. Yuan, Z., Chen, W., Zhang, J., Zhang, J., Xiang, T., Hu, J., Wu, Z., Du, X., Huang, A. & Zheng, J. (2012). Development of an immunoassay for differentiating human immunodeficiency virus infections-from vaccine-induced immune response in Tiantan vaccine trials in China. Clin Biochem. 45(15), 1219–1224. DOI: 10.1016/j.clinbiochem.2012.05.013.10.1016/j.clinbiochem.2012.05.013Search in Google Scholar

3. Ivo dos Santos, J., Galvao-Castro, B., Mello, D.C., Pereira, H.G. & Pereira, M.S. (1987). Dot enzyme immunoassay. A simple, cheap and stable test for antibody to human immunodeficiency virus (HIV). J. Immunol. Methods 99(2), 191–194. DOI: 10.1016/0022-1759(87)90126-8.10.1016/0022-1759(87)90126-8Search in Google Scholar

4. Attallah, A.M., Osman, S., Saad, A., Omran, M., Ismail, H., Ibrahim, G. & Abo-Naglla, A. (2005). Application of a circulating antigen detection immunoassay for laboratory diagnosis of extra-pulmonary and pulmonary tuberculosis. Clin Chim Acta 356(1–2), 58–66. DOI: 10.1016/j.cccn.2004.11.036.10.1016/j.cccn.2004.11.036Search in Google Scholar

5. Olsen, S.J., Pruckler, J., Bibb, W., Thanh, N.T.M., Trinh, T.M., Minh, N.T., Sivapalasingam, S., Gupta, A., Phuong, P.T., Chinh, N.T., Chau, N.V., Cam, P.D. & D. Mintz, E. (2004). Evaluation of rapid diagnostic tests for typhoid fever. J Clin. Microbiol. 42(5), 1885–1889. DOI: 10.1128/JCM.42.5.1885-1889.2004.10.1128/JCM.42.5.1885-1889.2004Search in Google Scholar

6. Albertini, A., Ghielmi, S. & Belloli, S. (1982). Structure, immunochemical properties and immunoassay of human chorionic gonadotropin. Ric. Clin. Laborat. 12(1), 289–298. DOI: 10.1007/BF02909335.10.1007/BF02909335Search in Google Scholar

7. Debnath, M., Prasad, G.B.K.S. & Bisen, P.S. (2010). Immunoassay. Berlin, Germany: Springer Science+Business Media.Search in Google Scholar

8. O’Sullivan, M.J. (2005). Immunoassays. Berlin, Germany: Springer Science+Business Media.Search in Google Scholar

9. Ciardelli, G., Silvestri, D., Barbani, N., Ionita, M., Redaelli, A. & Giusti, P. (2006). Bioartificial polymer membranes as innovative systems for biomedical or biotechnological uses. Desalination 200(1–3), 493–495. DOI: 10.1016/j.desal.2006.03.408.10.1016/j.desal.2006.03.408Search in Google Scholar

10. Aizawa, K. & Gantt, E. (1998). Rapid method for assay of quantitative binding of soluble proteins and photosynthetic membrane proteins on poly(vinylidene difluoride) membranes Anal. Chim. Acta 365(1–3), 109–113. DOI: 10.1016/S0003-2670(97)00670-3.10.1016/S0003-2670(97)00670-3Search in Google Scholar

11. Ebnesajjad, S. (2000). Fluoroplastics. Volume 1: Non-Melt Processible Fluoroplastics The Definitive User’s Guide and Databook. New York, USA: Plastics Design Library.Search in Google Scholar

12. He, Q.H., Xu, Y., Wang, D., Kang, M., Huang, Z.B. & Li, Y.P. (2012). Simultaneous multiresidue determination of mycotoxins in cereal samples by polyvinylidene fluoride membrane based dot immunoassay. Food Chem. 134(1), 507–512. DOI: 10.1016/j.foodchem.2012.02.109.10.1016/j.foodchem.2012.02.109Search in Google Scholar

13. Sulimenko, T. & Dráber, P. (2004). A fast and simple dot-immunobinding assay for quantification of mouse immunoglobulins in hybridoma culture supernatants. J. Immunol. Methods 289(1–2), 89–95. DOI: 10.1016/j.jim.2004.03.010.10.1016/j.jim.2004.03.01015251415Search in Google Scholar

14. Low, S.C., Ahmad, A.L., Ideris, N. & Ng, Q.H. (2011). Interaction of isothermal phase inversion and membrane formulation for pathogens detection in water. Biores. Technol 113, 219–224. DOI: 10.1016/j.biortech.2011.11.048.10.1016/j.biortech.2011.11.04822153291Search in Google Scholar

15. Ahmad, A.L., Ideris, N., Ooi, B.S., Low, S.C. & Ismail, A. (2012). Synthesis of polyvinylidene fluoride (PVDF) membranes for protein binding: Effect of casting thickness. J. Appl. Polym. Sci. 128(5), 3438–3445. DOI: 10.1002/app.38522.10.1002/app.38522Search in Google Scholar

16. Kaur, S., Ma, Z., Gopal, R., Singh, G., Ramakrishna, S. & Matsuura, T. (2007). Plasma-induced graft copolymerization of Poly(methacrylic acid) on electrospun Poly(vinylidene fluoride) nanofiber membrane. Langmuir 23(26), 13085–13092. DOI: 10.1021/la701329r.10.1021/la701329rSearch in Google Scholar

17. Nguyen, Q.T., Alaoui, O.T., Yang, H. & Mbareck, C. (2010). Dry-cast process for synthetic microporous membranes: Physico-chemical analyses through morphological studies. J. Mem. Sci. 358(1–2), 13–25. DOI: 10.1016/j.memsci.2010.04.022.10.1016/j.memsci.2010.04.022Search in Google Scholar

18. El-Sharif, H.F., Stevenson, D., Warriner, K. & Reddy, S.M. (2014) Hydrogel-based molecularly imprinted polymers for biological detection. Berlin, Germany: Springer-Verlag.10.1039/9781849737074-00075Search in Google Scholar

19. Morçöl, T. & Subramanian, A. (1999). A red-dot-blot protein assay technique in the low nanogram range. Anal. Biochem. 270(1), 75–82. DOI: 10.1006/abio.1999.4057.10.1006/abio.1999.4057Search in Google Scholar

20. Ming, Li, D.L.P., Yvonne Cosgrove-Sweeney, Deena Ratner, Lisa C. Rohan, Alexander M. Cole, Patrick M. Tarwater, Phalguni Gupta and Bharat Ramratnam (2011). Incorporation of the HIV-1 microbicide cyanovirin-N in a food product. J. Acquir. Immune. Defic. Syndr. 58(4), 379. DOI: 10.1097/QAI.0b013e31823643fe.10.1097/QAI.0b013e31823643feSearch in Google Scholar

21. Bannur, S.V., Kulgod, S.V., Metkar, S.S., Mahajan, S.K. & Sainis, J.K. (1999). Protein determination by Ponceau S using digital color image analysis of protein spots on nitrocellulose membranes. Anal. Biochem. 267(2), 382–389. DOI: http://dx.doi.org/10.1006/abio.1998.3020.Search in Google Scholar

22. Yunker, P.J., Still, T., Lohr, M.A. & Yodh, A.G. (2011). Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature 476(7360), 308–311. DOI: 10.1038/nature10344.10.1038/nature10344Search in Google Scholar

23. Gorr, H.M., Zueger, J.M. & Barnard, J.A. (2012). Characteristic size for onset of coffee-ring effect in evaporating lysozyme-water solution droplets. J. Phys. Chem. B 116(40), 12213–12220. DOI: 10.1021/jp307933a.10.1021/jp307933aSearch in Google Scholar

24. Norde, W. (1999). Proteins at Solid Surfaces. New York, USA: Marcel Dekker Inc.Search in Google Scholar

25. Giacomelli, C.E. (2006). Adsorption of immunoglobulins at solid-liquid interfaces. Boca Raton, Fla: Taylor & Francis.Search in Google Scholar

26. Nakanishi, K., Sakiyama, T. & Imamura, K. (2001). On the adsorption of proteins on solid surfaces, a common but very complicated phenomenon. J. Biosci. Bioeng. 91(3), 233–244. DOI: 10.1016/S1389-1723(01)80127-4.10.1016/S1389-1723(01)80127-4Search in Google Scholar

27. Norde, W. (1998). Driving forces for protein adsorption at solid surfaces. New York, USA: Marcel Dekker Inc.Search in Google Scholar

28. Liu, F., Awanis Hashim, N., Liu, Y., Moghareh Abed, M.R. & Li, K. (2011). Progress in production and modification of PVDF membranes. J. Mem. Sci. 375(1–2), 1–27. DOI: 10.1016/j.memsci.2011.03.014.10.1016/j.memsci.2011.03.014Search in Google Scholar

29. Baker, R.W. (2003). Membrane technology. New Jersey, USA: A John Wiley & Sons Publication.Search in Google Scholar

eISSN:
1899-4741
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Industrielle Chemie, Biotechnologie, Chemieingenieurwesen, Verfahrenstechnik