Uneingeschränkter Zugang

Reverse osmosis as one-step wastewater treatment: a case study on groundwater pollution


Zitieren

1. Derbalah, A., Ismail, A. & Shaheen, S. (2013) Monitoring of organophosphorus pesticides and remediation technologies of the frequently detected compound (chlorpyrifos) in drinking water. Pol. J. Chem. Technol. 15(3) 25–34. DOI: 10.2478/pjct-2013-0040.10.2478/pjct-2013-0040Search in Google Scholar

2. Ullah, A., Khattak, M.N.K., Richter, P. & Hader, D.P. (2011). Water pollution in Pakistan and its impact on public health- A review. Environ. Inter. J. 37(2), 479–497. DOI: 10.1016/j.envint.2010.10.007.10.1016/j.envint.2010.10.007Search in Google Scholar

3. Saleem, M., Bukhari, A.A. & Al-Malack, M.H. (2000). Removal efficiencies of indicator micro-organisms in the Al-Khobar waste treatment plant. Environ. Engine. Sci. 17(4), 227–232. DOI: 10.1089/10928750050137570.10.1089/10928750050137570Search in Google Scholar

4. Patil, I.D., Patil, Y.S. & Pangarkar, B.L. (2013). Removal of lindane from wastewater using liquid-liquid extraction process. Pol. J. Chem. Technol.. 15(3) 81–84. DOI: 10.2478/pjct-2013-0050.10.2478/pjct-2013-0050Search in Google Scholar

5. George, I., Crop, P. & Servais, P. (2002). Fecal coliform removal in wastewater treatment plants studied by plate counts and enzymatic methods. Water Res. 36(10), 2607–2617. DOI: 10.1016/S0043-1354(01)00475-4.10.1016/S0043-1354(01)00475-4Search in Google Scholar

6. Koivunen, J., Siitonen, A. & Heinonen-Tanski, H. (2003). Elimination of enteric bacteria in biological-chemical wastewater treatment and tertiary filtration units. Water Res. 37(3), 690–698. DOI: 10.1016/S0043-1354(02)00305-6.10.1016/S0043-1354(02)00305-6Search in Google Scholar

7. Zhang, K. & Farahbakhsh, K. (2007). Removal of native coliphages and coliform bacteria from municipal wastewater by various wastewater treatment processes: Implications to water reuse, Water Res. 41(12), 2816–2824. DOI: 10.1016/j.watres.2007.03.010.10.1016/j.watres.2007.03.010Search in Google Scholar

8. Cheremisinoff, P.N. (2008). Handbook of water and waste-water technologies, Butterworth-Heinemann. DOI: 10.1016/B978-075067498-0/50004-8.10.1016/B978-075067498-0/50004-8Search in Google Scholar

9. Wintgens, T., Melin, T., Schafer, A., Khan, S., Muston, M., Bixio, D. & Thoeye, C. (2005). The role of membrane processes in municipal wastewater reclamation and reuse. Desalination 178(1–3), 1–11. DOI: 10.1016/j.desal.2004.12.014.10.1016/j.desal.2004.12.014Search in Google Scholar

10. Der Bruggen, B.V. & Vandecasteele, C. (2003). Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry, Environ. Pollut. 122(3), 435–445. DOI: 10.1016/S0269-7491(02)00308-1.10.1016/S0269-7491(02)00308-1Search in Google Scholar

11. Der Bruggen, B.V., Schaep J., Maes, W., Wilms, D. & Vandecasteele, C. (1998). Nanofiltration as a treatment method for the removal of pesticides from ground waters. Desalination 117(1–3), 139–147. DOI: 10.1016/S0011-9164(98)00081-2.10.1016/S0011-9164(98)00081-2Search in Google Scholar

12. Pendergast, M.T.M. & Hoek, E.M.V. (2011). A review of water treatment membrane nanotechnologies. Energy Environ. Sci. 4(6), 1946–1971. DOI: 10.1039/C0EE00541J.10.1039/c0ee00541jSearch in Google Scholar

13. Escobar, I.C., Hong, S. & Randall, A.A. (2000). Removal of assimilable organic carbon and biodegradable dissolved organic carbon by reverse osmosis and nanofiltration membranes. J. Memb. Sci. 175(1), 1–17. DOI: 10.1016/S0376-7388(00)00398-7.10.1016/S0376-7388(00)00398-7Search in Google Scholar

14. Pontie, M., Rapenne, S., Thekkedath, A., Duchesne, J., Jacquemet, V., Leparc, J. & Suty, H. (2005). Tools for membrane autopsies and antifouling strategies in seawater feeds: a review. Desalination 181(1–3), 75–90. DOI: 10.1016/j.desal.2005.01.013.10.1016/j.desal.2005.01.013Search in Google Scholar

15. Bai, L., Qu, F., Liqng, H., Ma, J., Chang, H., Wang, M. & Li, G. (2013). Membrane fouling during ultrafiltration (UF) of surface water: Effects of sludge discharge interval (SDI). Desalination 319, 18–24. DOI: 10.1016/j.desal.2013.04.004.10.1016/j.desal.2013.04.004Search in Google Scholar

16. Winfield, B.A. (1979). The treatment of sewage effluents by reverse osmosis- pH based studies of the fouling layer and its removal. Water Res. 13(7), 561–564. DOI: 10.1016/0043-1354(79)90001-0.10.1016/0043-1354(79)90001-0Search in Google Scholar

17. Winfield, B.A. (1979). A study of the factors affecting the rate of fouling of reverse osmosis membranes treating secondary sewage effluents. Water Res. 13(7), 565–569. DOI: 10.1016/0043-1354(79)90002-2.10.1016/0043-1354(79)90002-2Search in Google Scholar

18. Gryta, M., Bastrzyk, J. & Lech, D. (2012). Evaluation of fouling potential of nanofiltration membranes based on the dynamic contact angle measurements. Pol. J. Chem. Technol. 14(3) 97–104. DOI: 10.2478/v10026-012-0091-4.10.2478/v10026-012-0091-4Search in Google Scholar

19. McCutcheon, J.R. & Elimelech, M. (2006). Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis. J. Memb. Sci. 284(1–2), 237–247. DOI: 10.1016/j.memsci.2006.07.049.10.1016/j.memsci.2006.07.049Search in Google Scholar

20. Cath, T.Y., Childress, A.E. & Elimelech, M. (2006). Forward osmosis: principles, applications, and recent developments. J. Memb. Sci. 281(1–2), 70–87. DOI: 10.1016/j.memsci.2006.05.048.10.1016/j.memsci.2006.05.048Search in Google Scholar

21. Potts, D.E., Ahlert, R.C. & Wang, S.S. (1981). A critical review of fouling of reverse osmosis membranes. Desalination 36(3), 235–264. DOI: 10.1016/S0011-9164(00)88642-7.10.1016/S0011-9164(00)88642-7Search in Google Scholar

22. Hastuti, E. & Wardiha, M.W. (2012). A study of brackish water membrane with ultrafiltration pretreatment in Indonesia’s coastal area. J. Urban Environ. Engine. 6(1), 10–17. DOI: 10.4090/juee.2012.v6n1.010017.10.4090/juee.2012.v6n1.010017Search in Google Scholar

23. Afonso, M.D., Jaber, J.O. & Mohsen, M.S. (2004). Brackish groundwater treatment by reverse osmosis in Jordan. Desalination 164(2), 157–171. DOI: 10.1016/S0011-9164(04)00175-4.10.1016/S0011-9164(04)00175-4Search in Google Scholar

24. Nataraj, S.K., Hosamani, K.M. & Aminabhavi, T.M. (2006). Distillery wastewater treatment by the membrane-based nanofiltration and reverse osmosis processes. Water Res. 40(12), 2349–2356. DOI: 10.1016/j.watres.2006.04.022.10.1016/j.watres.2006.04.022Search in Google Scholar

25. Yavuz, E., Arar, O., Yuksel, U., Yuksel, M. & Kabay, N. (2013). Removal of boron from geothermal water by RO system-III-Utlization of SWRO system. Desalination 310(1), 140–144. DOI: 10.1016/j.desal.2012.07.046.10.1016/j.desal.2012.07.046Search in Google Scholar

26. Jawad, M.A., Al-Shammari, S. & Al-Sulaimi, J. (2002). Non-Conventional treatment of treated municipal waste-water for reverse osmosis. Desalination 142(1), 11–18. DOI: 10.1016/S0011-9164(01)00421-0.10.1016/S0011-9164(01)00421-0Search in Google Scholar

27. Mierzwa, J.C., Da Silva, M.C.C., Veras, L.R.V., Subtil, E.L., Rodrigues, R., Li, T. & Landenberger, K.R. (2012). Enhancing spiral-wound ultrafiltration performance for direct drinking water treatment through operational procedures improvement: A feasible option for the Sao Paulo Metropolitan region. Desalination 307, 68–75. DOI: 10.1016/j.desal.2012.09.006.10.1016/j.desal.2012.09.006Search in Google Scholar

28. Turan, M. (2004). Influence of filtration conditions on the performance of nanofiltration and reverse osmosis membranes in dairy wastewater treatment. Desalination 170(1), 83–90. DOI: 10.1016/j.desal.2004.02.094.10.1016/j.desal.2004.02.094Search in Google Scholar

29. Goncharuk, V.V., Osipenko, V.O., Balakina, M.N. & Kucheruk, D.D. (2013). Water purification of nitrates by low pressure reverse osmosis method. J. Water Chem. Technol. 35(2), 71–75. DOI: 10.3103/S1063455X13020045.10.3103/S1063455X13020045Search in Google Scholar

eISSN:
1899-4741
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Industrielle Chemie, Biotechnologie, Chemieingenieurwesen, Verfahrenstechnik