Zitieren

1. Xu, R., Pang, W., Yo, J., Huo, Q. & Chen, J. (2007). Chemistry of zeolites and related porous materials. Singapore, Republic of Singapore: Wiley.10.1002/9780470822371Search in Google Scholar

2. Oyama, T. (2008). Mechanisms in homogeneous and heterogeneous epoxidation catalysis. Amsterdam, Netherlands: Elsevier.Search in Google Scholar

3. Wróblewska, A. & Fajdek, A. (2010). Epoxidation of allyl alcohol to glycidol over the microporous TS-1 catalyst. J. Hazard. Mater. 35(2), 258–265. DOI: 10.1016/j.jhazmat.2010.02.088.10.1016/j.jhazmat.2010.02.08820346584Search in Google Scholar

4. Wróblewska, A. (2012). Optimization of the reaction parameters of epoxidation of allyl alcohol with hydrogen peroxide over TS-2 catalysts. Appl. Catal. A: General 309(2), 192–200. DOI: 10.1016/j.apcata.2006.05.004.10.1016/j.apcata.2006.05.004Search in Google Scholar

5. Wróblewska, A., Fajdek, A. & Wajzberg, J. (2008). Epoxidation of allyl alcohol to glycidol over titanium-silicalite Ti-beta and Ti-MCM-41 catalysts. J. Adv. Oxid. Technol. 11(3), 468–476.10.1515/jaots-2008-0306Search in Google Scholar

6. Fajdek, A., Wróblewska, A. & Milchert, E. (2012). Clean synthesis of 2-methylglycidol over a novel titanosilica catalyst – Ti-MWW under autogenic pressure. Int. J. Chem. Reac. Eng. 10, A10. DOI: 10.1515/1542-6580.2898.10.1515/1542-6580.2898Search in Google Scholar

7. Wu, P. & Tatsumi, T. (2003). Postsynthesis, characterization, and catalytic properties in alkene epoxidation of hydrothermally stable mesoporous Ti-SBA-15. J. Catal. 214, 317–326. DOI: 10.1021/cm010910v.10.1021/cm010910vSearch in Google Scholar

8. Wróblewska, A. & Milchert, E. (2009). Liquid phase epoxidation of allylic compounds with hydrogen peroxide at autogenic and atmospheric pressure over mesoporous Ti-MCM-48 catalyst. J. Adv. Oxid. Technol. 12(2), 170–177.10.1515/jaots-2009-0204Search in Google Scholar

9. Wróblewska, A. & Makuch, E. (2012). The utilization of Ti-SBA-15 catalyst in the epoxidation of allylic alcohols. Reac. Kinet. Mech. Catal. 105, 451–468. DOI: 10.1007/s11144-011-0405-1.10.1007/s11144-011-0405-1Search in Google Scholar

10. Wu, P. & Tatsumi, T. (2002). Postsynthesis, characterization, and catalytic properties in alkene epoxidation of hydrothermally stable mesoporous Ti-SBA-15. Chem. Mater. 14, 1657–1664. DOI: 10.1021/cm010910v.10.1021/cm010910vSearch in Google Scholar

11. Wittmann, G., Demeester, K., Dombi, A., Dewulf, J. & Van Langenhove, H. (2005). Preparation, structural characterization and photocatalytic activity of mesoporous Ti-silicates. Appl. Catal.: Environmental 61, 47–57. DOI: 10.1016/j.apcatb.2005.04.010.10.1016/j.apcatb.2005.04.010Search in Google Scholar

12. Berube, F., Kleitz, F. & Kaliaguine, S. (2009). Surface properties and epoxidation catalytic activity of Ti-SBA-15 prepared by direct synthesis. J. Mater. Sci. 44, 6727–6735. DOI: 10.1007/s10853-009-3566-9.10.1007/s10853-009-3566-9Search in Google Scholar

13. Berube, F., Kleitz, F. & Kaliaguine, S. (2008). A comprehensive study of titanium-substituted SBA-15 mesoporous materials prepared by direct synthesis. J. Phys. Chem. C 112, 14403–14411. DOI: 10.1021/jp803853m.10.1021/jp803853mSearch in Google Scholar

14. Milchert, E. & Wróblewska, A. (1996). Synthesis of Glycidol. Przem. Chem. 75(10), 367–368.Search in Google Scholar

15. Hanson, R. (1991). The synthetic methodology of nonracemic glycidol and related 2,3-epoxy alcohols. Chem. Rev. 91, 437–475.10.1021/cr00004a001Search in Google Scholar

16. Dworak, A., Trzebicka, B., Wałach, W. & Baran, K. (1999). Polyglycidol –block-poly(ethylene oxide) – block – polyglycidol: synthesis and swelling properties. Reac. Funct. Polym. 42, 31–36.10.1016/S1381-5148(98)00060-1Search in Google Scholar

17. Toshima, K., Okuno, Y. & Matsumura, S. (2003). Glycidol – carbohydrate hybrids – a new family of DNA alkylating agents. Bioorg. Med. Chem. Lett. 13(19), 3281–3283. DOI: 10.1016/S0960-894X(03)00659-0.10.1016/S0960-894X(03)00659-0Search in Google Scholar

18. Aragones, S., Bravo, F., Diaz, Y., Matheu, M. & Catillon, S. (2003). Stereoselective synthesis of α-isonucleosides. Terahedron Lett. 44, 3771–3773. DOI: 10.1016/S0040-4039(03)00743-3.10.1016/S0040-4039(03)00743-3Search in Google Scholar

19. Cassel, S., Debaig, C., Benvegnu, T., Chaimbault, P., Lafosse, M., Plusquellec, D. & Rollin, P. (2001). Original synthesis of linear branched and cyclic oligoglycerol standards. Eur. J. Org. Chem. 875–896. DOI: 10.1002/1099-0690(200103).Search in Google Scholar

20. Hauck, F.P. & Jacobs, G.A. (1981). Anti-arrhythmia agents. US Patent Application No. 4279902. Alexandria: United States Patent and Trademark Office.Search in Google Scholar

21. Rieu, J.P., Patoiseau, J.F., John, G., Legrand, B. & Verscheure, Y. (2003). Substituted 1-(4-piperydyl)-3-(akrylisothioureas their preparation and their therapeutic application. US Patent Application No. 6531469 B1. Alexandria: United States Patent and Trademark Office.Search in Google Scholar

22. Lukyanenko, G. & Reder, A.S. (1988). Macroheterocycles. Part 42. A facile synthesis of dihydroxy cryptands and their dehydroxylation J. Chem. Soc., Perkin Trans. 2533–2536.Search in Google Scholar

23. Machleder, W.H., Bollinger, J.M. (1981). Multipurpose hydrocarbon fuel and lubricating oil additive. US Patent Application No. 4259086. Alexandria: United States Patent and Trademark Office.Search in Google Scholar

24. Ermakov, A.S., Bulatov, P.V. & Tartakovsky, V.A. (1977). The reaction of sulfamic acid derivatives with epoxides. Reaction of sulfamates with diglycidyl and allylglycidyl ether and synthesis of the corresponding aminathes. Rus. Chem. Bull. 46(3), 487–490.Search in Google Scholar

25. Brill, W.F. (1963). The origin of epoxides in the liquid phase oxidation of olefins with molecular oxygen. J. Am. Chem. Soc. 85, 141–145.10.1021/ja00885a006Search in Google Scholar

26. Golowa, B.M., Motowiljak, L.W., Politanskij, S.F., Stjepanow, M.W. & Czeljadin, W.T. (1974). Opredelenie osnownych komponentow processa poluczenija glicerina putem gidroksilirowanja allilowago spirta. Zavod. Lab. 40, 1192–1195.Search in Google Scholar

27. Montgomery, D.C. (1976). Design and analysis of experiments. New York, USA: Wiley.Search in Google Scholar

28. Nalimowv, W.W. & Czernowa, V.A. (1967). Statistical methods of experiments planning. Warsaw, Poland: Scientific-Technical Publishers (in Polish).Search in Google Scholar

29. Achnazarova, S.Ł. & Kafarov, V.V. (1982). Optimization of experiments in chemistry and chemical technology. Warsaw, Poland: Scientific-Technical Publishers (in Polish).Search in Google Scholar

30. Polański, Z. (1984). Experiments planning in technique. Warsaw, Poland: Scientific-Technical Publishers (in Polish).Search in Google Scholar

31. Polański, Z. & Górecka-Polańska, R. (1992). Cadex: ESDET 2.2. program, Planning and statistical analysis of experimental investigations applying determined statistical analysis. Cracow, Poland: Department of Technical Development and Implementation (in Polish).Search in Google Scholar

32. Zieliński, R. Statistical tables. (1992). Warsaw, Poland: Scientific Publishers (in Polish).Search in Google Scholar

33. Findeisen, W., Szymanowski, I. & Wierzbicki, A. (1980). Theory and calculating methods of optimization. Warsaw, Poland: Science Publishers (in Polish).Search in Google Scholar

eISSN:
1899-4741
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Industrielle Chemie, Biotechnologie, Chemieingenieurwesen, Verfahrenstechnik