Uneingeschränkter Zugang

Adsorption of penicillin by decaffeinated tea waste


Zitieren

1. Ania, C.O., Pelay o, J.G. & Bandosz, T. J. (2011). Reactive adsorption of penicillin on activated carbons. Adsorption 17, 421–429. DOI: 10.1007/s10450-010-9271-9.10.1007/s10450-010-9271-9Search in Google Scholar

2. Choi, K.J., Kim, S.G. & Kim, S.H. (2008). Removal of antibiotics by coagulation and granular activated carbon Filtration. J. Hazard. Mater. 151, 38–43. DOI: 10.1016/j.jhazmat.2007.05.059.10.1016/j.jhazmat.2007.05.059Search in Google Scholar

3. Al-Ahmad, A., Daschner, F.D. & Kummerer, K. (1999). Biodegradability of cefotiam, ciprofloxacin, meropenem, penicillin G, and sulfamethoxazole and inhibition of waste water bacteria. Arch. Environ. Contam. Toxicol. 37, 158–163. DOI: 10.1007/s002449900501.10.1007/s002449900501Search in Google Scholar

4. Zümriye, A. & Özlem, T. (2005). Application of biosorption for penicillin G removal: comparison with activated carbon. Process Biochem. 40, 831–847. DOI: 10.1016/j.procbio.2004.02.014.10.1016/j.procbio.2004.02.014Search in Google Scholar

5. Chaubal, M.V., Payne, G.F., Reynolds, C.H. & Albright, R.L. (1995). Equilibria for the adsorption of antibiotics onto neutral polymeric sorbents: Experimental and modeling studies. Biotechnol. Bioeng. 47, 215–226. DOI: 10.1002/bit.260470213.10.1002/bit.260470213Search in Google Scholar

6. Zhang, H., Yu, X., Chen, L., Jing, Y. & Ge, Z. (2010). Study of Ni-63 adsorption on NKF-6 zeolite. J. Environ. Radioact. 101, 1061–1069. DOI: 10.1016/j.jenvrad.2010.08.009.10.1016/j.jenvrad.2010.08.009Search in Google Scholar

7. Zuorro, A. & Lavecchia, R. (2010). Adsorption of Pb(II) on Spent Leaves of Green and Black Tea. Am. J. Appl. Sci. 7, 153–159. DOI: 10.1016/j.procbio.2005.02.004.10.1016/j.procbio.2005.02.004Search in Google Scholar

8. Chen, C. & Wang, J. (2009). Biosorbents for heavy metals removal and their future. Biotechnol. Adv. 27, 195–226. DOI: 10.1016/j.biotechadv.2008.11.002.10.1016/j.biotechadv.2008.11.002Search in Google Scholar

9. Arshad Khosa, M., Wua, J. & Ullah, A. (2013). Chemical modification, characterization, and application of chicken feathers as novel biosorbents. RSC Adv. 3, 20800–20810. DOI: 10.1039/C3RA43787F.10.1039/c3ra43787fSearch in Google Scholar

10. Srinivasan, A. & Viraraghavan, T. (2010). Decolorization of dye wastewaters by biosorbents: A review. J. Environ. Manage. 91, 1915–1929. DOI: 10.1016/j.jenvman.2010.05.003.10.1016/j.jenvman.2010.05.003Search in Google Scholar

11. Hameed, B.H. (2009). Spent tea leaves: A new non-conventional and low-cost adsorbent for removal of basic dye from aqueous solutions. J. Hazard. Mater. 161, 753–759. DOI: 10.1016/j.jhazmat.2008.04.019.10.1016/j.jhazmat.2008.04.019Search in Google Scholar

12. Uddin, M.T., Islam, M.A., Mahmud, S. & Rukanuzzaman, M. (2009). Adsorptive removal of methylene blue by tea waste. J. Hazard. Mater. 164, 53–60. DOI: 10.1016/j.jhazmat.2008.07.131.10.1016/j.jhazmat.2008.07.131Search in Google Scholar

13. Yang, X. & Cui, X. (2013). Adsorption characteristics of Pb (II) on alkali treated tea residue. Water Resour. Ind. 3, 1–10. DOI: 10.1016/j.wri.2013.05.003.10.1016/j.wri.2013.05.003Search in Google Scholar

14. Amarasinghe, B.M.W.P.K. & Williams, R.A. (2007). Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater. Chem. Eng. J. 132, 299–309. DOI: 10.1016/j.cej.2007.01.016.10.1016/j.cej.2007.01.016Search in Google Scholar

15. Cay, S., Uyanik, A. & Ozasik, A. (2004). Single and binary component adsorption on copper (II) and cadmium (II) from aqueous solution using tea industry waste. Sep. Purif. Technol. 38, 273–280. DOI: 10.1016/j.seppur.2003.12.003.10.1016/j.seppur.2003.12.003Search in Google Scholar

16. Wasewar, K.L., Atif, M., Prasad, B. & Mishra, I.M. (2009). Batch adsorption of Zn on tea factory waste. Desalination 244, 66–71. DOI: 10.1016/j.desal.2008.04.036.10.1016/j.desal.2008.04.036Search in Google Scholar

17. Mohammad, A.H. & Md, S.A. (2012). Adsorption kinetics of Rhodamine-B on used black tea leaves. Iranian J. Environ. Health Sci. Eng. 9, 1–7. DOI: 10.1186/1735-2746-9-2.10.1186/1735-2746-9-2Search in Google Scholar

18. Jeyakumar, R.P.S. & Chandrasekaran, V. (2014). Adsorption of lead(II) ions by activated carbons prepared from marine green algae: Equilibrium and kinetics studies. Inter. J. Indu. Chem. 5, 1–10. DOI:10.1186/2228-5547-5-2.10.1186/2228-5547-5-2Search in Google Scholar

19. Chen, D.Z., Zhang, J.X. & Chen, J.M. (2010). Adsorption of methyl tert-butyl ether using granular activated carbon: Equilibrium and kinetic analysis. Int. J. Environ. Sci. Tech. 7, 235–242. DOI: 10.1007/BF03326133.10.1007/BF03326133Search in Google Scholar

20. Pandey, P.K., Sharma, S.K. & Sambi, S.S. (2010). Kinetics and equilibrium study of chromium adsorption on zeolite NaX. Int. J. Environ. Sci. Tech. 7, 395–404. DOI: 10.1007/BF03326149.10.1007/BF03326149Search in Google Scholar

21. Tseng, R.L. & Wu, F.C. (2009). Analyzing concurrent multi-stage adsorption process of activated carbon with a favorable parameter of Langmuir equation. J. Taiwan Inst. Chem. E. 40, 197–204. DOI: 10.1016/j.jtice.2008.09.002.10.1016/j.jtice.2008.09.002Search in Google Scholar

22. Ho, Y.S., Porter, J.F. & Mckay, G. (2002). Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems. Water Air Soil Poll. 141, 1–33. DOI: 10.1023/A:1021304828010.10.1023/A:1021304828010Search in Google Scholar

23. Ahmed Dhahir, S. & AL-Saade, K.A. (2013). Adsorption study of rhodamin b dye on iraqi bentonite and modified bentonite by nanocompounds TiO ZnO, Al2O3, sodium dodecyl sulfate. Am. J. Environ. Sci. 9, 269–279. DOI: 10.3844/ajessp.2013.269.279.10.3844/ajessp.2013.269.279Search in Google Scholar

24. Zheng, H., Liu, D., Zheng, Y., Liang, S. & Liu, Z. (2009). Sorption isotherm and kinetic modeling of aniline on Cr-bentonite. J. Hazard. Mater. 167, 141–147. DOI: 10.1016/j.jhazmat.2008.12.093.10.1016/j.jhazmat.2008.12.093Search in Google Scholar

25. Tosun, I. (2012). Ammonium Removal from Aqueous Solutions by Clinoptilolite: Determination of Isotherm and Thermodynamic Parameters and Comparison of Kinetics by the Double Exponential Model and Conventional Kinetic Models. Int. J. Environ. Res. Pub. Health. 9, 970–984. DOI: 10.3390/ijerph9030970.10.3390/ijerph9030970Search in Google Scholar

eISSN:
1899-4741
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Industrielle Chemie, Biotechnologie, Chemieingenieurwesen, Verfahrenstechnik