Uneingeschränkter Zugang

Effect of ascorbic acid on morphological and biochemical parameters in tomato seedling exposure to salt stress


Zitieren

AGAMI R.A. 2014. Applications of ascorbic acid or proline increase resistance to salt stress in barley seedlings. Biologia Plantarum, 58, 2: 341-347.Search in Google Scholar

ASHRAF M., KARIM F., RASUL E. 2002. Interactive effects of gibberellic acid (GA3) and salt stress on growth, ion accumulation and photosynthetic capacity of two spring wheat (Triticum aestivum L.) cultivars differing in salt tolerance. Plant Growth Regulators, 36, 1: 49-59.Search in Google Scholar

ASLAN R., BOSTAN N., AMEN N., MARIA M., SAFDAR W. 2011. A critical review on halophytes: salt tolerant plants. Journal of Medicinal Plant Research, 5: 7108-7118.Search in Google Scholar

ARNON D.J., ALLEN M.B., WHATLEY F. 1956. Photosynteis by isolated chloroplast. Biochimica and Biophysica Acta, 20: 449-461.Search in Google Scholar

BATES L. S. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil, 39: 205-207.Search in Google Scholar

BYBORDI A. 2012. Effect of ascorbic acid and silicium on photosynthesis, antioxidant enzyme activity, and fatty acid contents in Canola exposure to salt stress. Journal of Integrative Agriculture, 11, 10: 1610-1620.Search in Google Scholar

CUARTERO J., FERNANDEZ-MUÑOZ R. 1999. Tomato and salinity. Scientia Horticulturae, 78: 83-125.Search in Google Scholar

CUARTERO J., BOLARIN M.C., ASINS M.J., MORENO V. 2006. Increasing salt tolerance in the tomato. Journal of Experimental Botany, 57,5: 1045-1058.Search in Google Scholar

DEMIR Y., KOCAÇALIŞKAN I. 2002. Effect of NaCl and proline on bean seedlings cultured in vitro. Biologia Plantarum, 45, 4: 597-599.Search in Google Scholar

GOEL D., SINGH A.K., YADAV V., BABBAR S.B. 2010. Overexpression of osmotin gene confers tolerance to salt and drought stresses in transgenetic tomato (Solanum lycopersicum L.). Protoplasma, 245, 1-4: 133-141.Search in Google Scholar

HENDRY G.A.F., GRIME J.P. 1993. Methods in comparative plant ecology. Marcel Dekker, New York, pp.282.Search in Google Scholar

JONES R.A. 1986. High salt tolerance potential in Lycopersicon species during germination. Euphytica, 35: 575-582.Search in Google Scholar

KHAN T.A., MAZID M., MOHAMMAD F. 2011. A review of ascorbic acid potentialities against oxidative stress induced in plants. Journal of Agrobiology, 28, 2: 97-111.Search in Google Scholar

KRUPA-MAŁKIEWICZ M., FRANCZAK M., GRABIEC M., SMOLIK B., SMOLIK M. 2014. Genotypic differences between tomato cultivars differing in their response to salinity stress. Folia Pomeranae Universitatis Technologiae Stetinensis, 309, 29: 75-84.Search in Google Scholar

LICHTENTHALER H.K., WELLBURN A.R. 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11: 591-592.Search in Google Scholar

PRICE A.H., HENDRY G.A.F. 1991. Ion-catalyzed oxygen radical formation and its possible contribution to drought damages in nine native grasses and three cereals. Plant Cell Environment, 14: 477-484.Search in Google Scholar

RAHNAMA H., EBRAHIMZADEH H. 2004. The effect of NaCl on proline accumulation in potato seedlings and calli. Acta Physiologiae Plantarum, 26,3: 263-270.Search in Google Scholar

RZEPKA-PLEVNEŠ D., KULPA D., SMOLIK M., GŁÓWKA M. 2007. Somaclonal variation in tomato L. pennelli and L. peruvianum f. glandulosum characterized in respect to salt tolerance. Journal of Food, Agriculture & Environment, 5, 2: 194-201.Search in Google Scholar

RZEPKA-PLEVNEŠ D., KRUPA-MAŁKIEWICZ M., TWARDOWSKA M., KUREK J., WYBORSKA K. 2008. Variability of rye varieties and breeding strains tested for tolerance to drought in in vitro cultures. Journal of Food, Agriculture & Environment, 6, 2: 265-271.Search in Google Scholar

SAEIDI-SAR S., ABBASPOUR H., AFSHARI H., YAGHOOBI S.R. 2013. Effects of ascorbic acid and gibberellin GA3 on alleviation of salt stress in common bean (Phaseolus vulgaris L.) seedlings. Acta Physiologiae Plantarum, 35: 667-677.Search in Google Scholar

SAJID Z.A., AFTABLE F. 2009. Amelioration of salinity tolerance in Solanum tuberosum L. by exogenous applicatiob of ascorbic acid. In Vitro Cellular & Developmental Biology-Plant, 45: 540-549.Search in Google Scholar

SMIRNOFF N., WHEELER G.L. 2000. Ascorbic acid in plants: biosynthesis and function. CRC Crit. Rev. Plant Science, 19: 267-290.Search in Google Scholar

SMOLIK M., KRAM P., KRUPA-MAŁKIEWICZ M., SMOLIK B., MALINOWSKA K. 2011. Response of tomato genotypes to sainity stress assessed at the seedlings stage. Electronic Journal of Polish Agricultural Universities, 14, 4: #17.Search in Google Scholar

SMOLIK B., MIŚKOWIEC A., REKOWSKA E., ZAKRZEWSKA H., ŚNIOSZEK M. 2013. The influence of particular biostimulators on some biochemical parameters in broccoli (Brassica oleracea L. var. Botrytis italica Plenck). Environmental Protection and Natural Resources, 24, 3: 25-27.Search in Google Scholar

SUDHAKAR C., LAKSHIM A., GIRIDARAKUMAR S. 2001. Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Science, 161: 613-619.Search in Google Scholar

YAMADA M., MORISHITA H., URANO K., SHIOZAKI N., YAMAGUCHI-SHINOZAKI K., SHINOZAKI K., YOSHIBA Y. 2005. Effects of free proline accumulation in petunias under drought stress. Journal of Experimental Botany, 56, 417: 1975-1981.Search in Google Scholar

eISSN:
2353-8589
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, Ökologie