Uneingeschränkter Zugang

Blade Tip-timing Technology with Multiple Reference Phases for Online Monitoring of High-speed Blades under Variable-speed Operation


Zitieren

[1] Tavakolpour-Saleh, A.R., Setoodeh, A.R., Gholamzadeh, M. (2016). A novel multi-component strain-gauge external balance for wind tunnel tests: Simulation and experiment. Sensors and Actuators A: Physical, 247, 172-186.10.1016/j.sna.2016.05.035Search in Google Scholar

[2] Sierra-Pérez, J., Torres-Arredondo, M.A., Güemes, A. (2016). Damage and nonlinearities detection in wind turbine blades based on strain field pattern recognition. FBGs, OBR and strain gauges comparison. Composite Structures, 135, 156-166.10.1016/j.compstruct.2015.08.137Search in Google Scholar

[3] Rothberg, S.J., Allen, M.S., Castellini, P. (2017). An international review of laser Doppler vibrometry: Making light work of vibration measurement. Optics and Lasers in Engineering, 99, 11-22.10.1016/j.optlaseng.2016.10.023Search in Google Scholar

[4] Tang, J., Soua, S., Mares, C. (2016). An experimental study of acoustic emission methodology for in service condition monitoring of wind turbine blades. Renewable Energy, 99, 170-179.10.1016/j.renene.2016.06.048Search in Google Scholar

[5] Talbot, J., Wang, Q., Brady, N. (2016). Offshore wind turbine blades measurement using Coherent Laser Radar. Measurement, 79, 53-65.10.1016/j.measurement.2015.10.030Search in Google Scholar

[6] Battiato, G., Firrone, C.M., Berruti, T.M. (2017). Forced response of rotating bladed disks: Blade Tip-Timing measurements. Mechanical Systems and Signal Processing, 85, 912-926.10.1016/j.ymssp.2016.09.019Search in Google Scholar

[7] Lin, J., Hu, Z., Chen, Z.-S. (2016). Sparse reconstruction of blade tip-timing signals for multimode blade vibration monitoring. Mechanical Systems and Signal Processing, 81, 250-258.10.1016/j.ymssp.2016.03.020Search in Google Scholar

[8] Guo, H., Duan, F., Zhang, J. (2016). Blade resonance parameter identification based on tip-timing method without the once-per revolution sensor. Mechanical Systems and Signal Processing, 66-67, 625-639.10.1016/j.ymssp.2015.06.016Search in Google Scholar

[9] dos Santos, F.L.M., Peeters, B., van der Auweraer, H. (2016). Vibration-based damage detection for a composite helicopter main rotor blade. Case Studies in Mechanical Systems and Signal Processing, 3, 22-27.10.1016/j.csmssp.2016.01.001Search in Google Scholar

[10] Rzadkowski, R., Rokicki, E., Piechowski, L. (2016). Analysis of middle bearing failure in rotor jet engine using tip-timing and tip-clearance techniques. Mechanical Systems and Signal Processing, 76-77, 213-227.10.1016/j.ymssp.2016.01.014Search in Google Scholar

[11] Rigosi, G., Battiato, G., Berruti, T.M. (2017). Synchronous vibration parameters identification by tip timing measurements. Mechanics Research Communications, 79, 7-14.10.1016/j.mechrescom.2016.10.006Search in Google Scholar

[12] Neumann, M., Dreier, F., Günther, P. (2015). A laseroptical sensor system for blade vibration detection of high-speed compressors. Mechanical Systems and Signal Processing, 64-65, 337-346.10.1016/j.ymssp.2015.04.026Search in Google Scholar

[13] Allport, J.M., Jupp, M.L., Pezouvanis, A. (2012). Turbocharger blade vibration: Measurement and validation through laser tip-timing. In 10th International Conference on Turbochargers and Turbocharging, 173-181.10.1533/9780857096135.3b.173Search in Google Scholar

[14] Chen, Z., Yang, Y., Xie, Y. (2013). Non-contact crack detection of high-speed blades based on principal component analysis and Euclidian angles using opticalfiber sensors. Sensors and Actuators A: Physical, 201, 66-72.10.1016/j.sna.2013.06.018Search in Google Scholar

[15] Di Maio, D., Ewins, D.J. (2012). Experimental measurements of out-of-plane vibrations of a simple blisk design using Blade Tip Timing and Scanning LDV measurement methods. Mechanical Systems and Signal Processing, 28, 517-527.10.1016/j.ymssp.2011.09.018Search in Google Scholar

[16] Günther, P., Dreier, F., Pfister, T. (2011). Measurement of radial expansion and tumbling motion of a high-speed rotor using an optical sensor system. Mechanical Systems and Signal Processing, 25, 319-330.10.1016/j.ymssp.2010.08.005Search in Google Scholar

[17] Zhou, Z., Chen, S., Li, W. (2018). Experiment study of aerodynamic performance for the suction-side and pressure-side winglet-cavity tips in a turbine blade cascade. Experimental Thermal and Fluid Science, 90, 220-230.10.1016/j.expthermflusci.2017.09.020Search in Google Scholar

[18] Ma, H., Lu, Y., Wu, Z., Tai, X. (2016). Vibration response analysis of a rotational shaft–disk–blade system with blade-tip rubbing. International Journal of Mechanical Sciences, 107, 110-125.10.1016/j.ijmecsci.2015.12.026Search in Google Scholar

[19] Tahani, M., Maeda, T., Babayan, N. (2017). Investigating the effect of geometrical parameters of an optimized wind turbine blade in turbulent flow. Energy Conversion and Management, 153, 71-82.10.1016/j.enconman.2017.09.073Search in Google Scholar

[20] Heath, S., Imregun, M. (1996). An improved singleparameter tip-timing method for turbomachinery blade vibration measurements using optical laser probes. International Journal of Mechanical Sciences, 38, 1047-1058.10.1016/0020-7403(95)00116-6Search in Google Scholar

[21] Xie, F., Ma, H., Cui, C. (2017). Vibration response comparison of twisted shrouded blades using different impact models. Journal of Sound and Vibration, 397, 171-191.10.1016/j.jsv.2017.02.056Search in Google Scholar

[22] Huang, H., Baddour, N., Liang, M. (2018). Bearing fault diagnosis under unknown time-varying rotational speed conditions via multiple time-frequency curve extraction. Journal of Sound and Vibration, 414, 43-60.10.1016/j.jsv.2017.11.005Search in Google Scholar

[23] Feng, Z., Chen, X., Wang, T. (2017). Time-varying demodulation analysis for rolling bearing fault diagnosis under variable speed conditions. Journal of Sound and Vibration, 400, 71-85.10.1016/j.jsv.2017.03.037Search in Google Scholar

[24] Mishra, C., Samantaray, A.K., Chakraborty, G. (2016). Rolling element bearing defect diagnosis under variable speed operation through angle synchronous averaging of wavelet de-noised estimate. Mechanical Systems and Signal Processing, 72-73, 206-222.10.1016/j.ymssp.2015.10.019Search in Google Scholar

[25] Wang, T., Liang, M., Li, J. (2015). Bearing fault diagnosis under unknown variable speed via gear noise cancellation and rotational order sideband identification. Mechanical Systems and Signal Processing, 62-63, 30-53.10.1016/j.ymssp.2015.03.005Search in Google Scholar

[26] Abboud, D., Antoni, J., Sieg-Zieba, S. (2017). Envelope analysis of rotating machine vibrations in variable speed conditions: A comprehensive treatment. Mechanical Systems and Signal Processing, 84, 200-226.10.1016/j.ymssp.2016.06.033Search in Google Scholar

[27] Guo, Y., Li, G., Chen, H. (2017). Development of a virtual variable-speed compressor power sensor for variable refrigerant flow air conditioning system. International Journal of Refrigeration, 74, 73-85.10.1016/j.ijrefrig.2016.09.025Search in Google Scholar

[28] Han, D., Pastrikakis, V., Barakos, G.N. (2016). Helicopter performance improvement by variable rotor speed and variable blade twist. Aerospace Science and Technology, 54, 164-173.10.1016/j.ast.2016.04.011Search in Google Scholar

[29] Yang, J., Song, D., Dong, M. (2016). Comparative studies on control systems for a two-blade variablespeed wind turbine with a speed exclusion zone. Energy, 109, 294-309.10.1016/j.energy.2016.04.106Search in Google Scholar

[30] Wang, W., Ren, S., Chen, L., Shao, H. (2017). The blade vibration measurement research based on the key phase interpolation method. Journal of Vibration, Measurement & Diagnosis, 37, 361-365.Search in Google Scholar

[31] Blundell, M., Harty, D. (2014). Multibody systems simulation software. In The Multibody Systems Approach to Vehicle Dynamics (Second Edition). Butterworth-Heinemann, 87-184Search in Google Scholar

eISSN:
1335-8871
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
6 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Elektrotechnik, Mess-, Steuer- und Regelungstechnik