Uneingeschränkter Zugang

Comparison of Two Experiments Based on a Physical and a Torsion Pendulum to Determine the Mass Moment of Inertia Including Measurement Uncertainties

   | 23. Feb. 2017

Zitieren

[1] Genta, G., Delprete, C. (1994). Some considerations on the experimental determination of moments of inertia. Meccanica 29 (2), 125–141. doi: 10.1007/BF01007497.10.1007/BF01007497Search in Google Scholar

[2] Soulé, K.A., Miller, M.P. (1933). The experimental determination of the moments of inertia of airplanes. NACA Technical Report 467, National Advisory Committee for Aeronautics, Langley Field, USA.Search in Google Scholar

[3] Gracey, W. (1948). The experimental determination of the moments of inertia of airplanes by a simplified compound-pendulum method. NACA Technical Note 1629, National Advisory Committee for Aeronautics, Langley Field, USA.Search in Google Scholar

[4] Jardin, M., Mueller, E. (2007). Optimized Measurements of UAV Mass Moment of inertia with a bifilar pendulum. In AIAA Guidance, Navigation and Control Conference and Exhibit, 20-23 August 2007, Hilton Head, USA. doi: 10.2514/6.2007-6822.10.2514/6.2007-6822Search in Google Scholar

[5] Swank, A.J. (2012). Precision mass property measurements using a five-wire torsion pendulum. In 27th Annual Meeting of the American Society for Precision Engineering, 21-26 October 2012, San Diego, USA.Search in Google Scholar

[6] Kooijman, J.D.G., Schwab, A.L., Meijaard, J.P. (2008). Experimental validation of a model of an uncontrolled bicycle. Multibody System Dynamics 19 (1-2), 115–132. doi: 10.1007/s11044-007-9050-x.10.1007/s11044-007-9050-xSearch in Google Scholar

[7] Pedersen, N.F., Sørensen, O.H. (1977). The compound pendulum in intermediate laboratories and demonstrations. American Journal of Physics 45 (10), 994–998. doi: 10.1119/1.10867.10.1119/1.10867Search in Google Scholar

[8] Robertson, R.L., Harris, E.C. (1962). A simplified technique for precision measurement of moment of inertia. In 21st National Conference of the SAWE, 14-17 May 1962, Seattle, USA. Society of Allied Weight Engineer.Search in Google Scholar

[9] Klaus, L. (2015). Dynamic torque calibration. PTB Mitteilungen 125 (2), 12–17. doi: 10.7795/310.20150203.Search in Google Scholar

[10] Bruns, T., Wedmann, A. (2006). Experimentelle Bestimmung von Massenträgheitsmomenten als Ruckfuhrungsgroße fur die dynamische Drehmomentkalibrierung (Experimental determination of moments of inertia for traceability in dynamic torque calibration). tm – Technisches Messen 73 (12), 692–697. doi: 10.1524/teme.2006.73.12.692.10.1524/teme.2006.73.12.692Search in Google Scholar

[11] Klaus, L., Bruns, T., Kobusch, M. (2014). Modelling of a dynamic torque calibration device and determination of model parameters. Acta IMEKO 3 (2), 14–18. doi: 10.21014/acta_imeko.v3i2.79.10.21014/acta_imeko.v3i2.79Search in Google Scholar

[12] Peschel, D., Mauersberger, D. (1994). Determination of the friction of aerostatic radial bearings for the levermass system of torque standard machines. In XIII IMEKO World Congress, 5-9 September 1994, Turin, Italy. IMEKO, 216-220.Search in Google Scholar

[13] Beléndez, A., Pascual, C., Méndez, D.I., Beléndez, T., Neipp, C. (2007). Exact solution for the nonlinear pendulum. Revista Brasileira de Ensino de Física 29 (4), 645–648. doi: 10.1590/S1806-11172007000400024.10.1590/S1806-11172007000400024Search in Google Scholar

[14] Baker, G.L., Blackburn, J.A. (2005). The Pendulum. Oxford University Press.Search in Google Scholar

[15] Ochs, K. (2011). A comprehensive analytical solution of the nonlinear pendulum. European Journal of Physics 32 (2), 479–490. doi: 10.1088/0143-0807/32/2/019.10.1088/0143-0807/32/2/019Search in Google Scholar

[16] Abramowitz, M., Stegun, I.A. (eds.) (1964; 1972 – 10th printing with corrections). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. United States Department of Commerce.Search in Google Scholar

[17] Symon, K.R. (1960). Mechanics. 2nd edition. Addison-Wesley.Search in Google Scholar

[18] Endevco Meggit Sensing Systems (2006). Guide to adhesively mounting accelerometers. Technical Report.Search in Google Scholar

[19] Joint Committee for Guides in Meteorology. (2008). Evaluation of measurement data —- Guide to the expression of uncertainty in measurement. JCGM 100:2008.Search in Google Scholar

[20] Joint Committee for Guides in Meteorology. (2008). Evaluation of measurement data —- Supplement 1 to the “Guide to the expression of uncertainty in measurement” – Propagation of distributions using a Monte Carlo method. JCGM 101:2008.Search in Google Scholar

[21] Wübbeler, G., Harris, P.M., Cox, M.G., Elster, C. (2010). A Two-stage procedure for determining the number of trials in the application of a Monte Carlo method for uncertainty evaluation. Metrologia 47 (3), 317–325. doi: 10.1088/0026-1394/47/3/023.10.1088/0026-1394/47/3/023Search in Google Scholar

[22] Free Software Foundation, Inc. GNU Octave. http://www.octave.org/.Search in Google Scholar

[23] Lindau, A., Kumme, R., Heiker, A. (2002). Investigation in the local gravity field of a force laboratory of PTB. In Joint International Conference IMEKO TC3/TC5/TC20: Proceedings of the International Conference on Force, Mass, Torque, Hardness and Civil Engineering Metrology in the Age Globalization, 24-26 September 2002, Celle, Germany. VDI-Berichte Nr. 1685.Search in Google Scholar

eISSN:
1335-8871
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
6 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Elektrotechnik, Mess-, Steuer- und Regelungstechnik